From Dynkin diagram symmetries to fixed point structures

被引:117
作者
Fuchs, J
Schellekens, B
Schweigert, C
机构
[1] NIKHEF-H/FOM, NL - 1098 SJ Amsterdam
关键词
D O I
10.1007/BF02101182
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Any automorphism of the Dynkin diagram of a symmetrizable Kac-Moody algebra g induces an automorphism of g and a mapping tau(omega) between highest weight modules of g. For a large class of such Dynkin diagram automorphisms, we can describe various aspects of these maps in terms of another Kac-Moody algebra, the ''orbit Lie algebra'' g. In particular, the generating function for the trace of tau(omega) over weight spaces, which we call the ''twining character'' of g (with respect to the automorphism), is equal to a character of g. The orbit Lie algebras of untwisted affine Lie algebras turn out to be closely related to the fixed point theories that have been introduced in conformal field theory. Orbit Lie algebras and twining characters constitute a crucial step towards solving the fixed point resolution problem in conformal field theory.
引用
收藏
页码:39 / 97
页数:59
相关论文
共 7 条
[1]   LEVEL-RANK DUALITY OF WZW THEORIES AND ISOMORPHISMS OF N=2 COSET MODELS [J].
FUCHS, J ;
SCHWEIGERT, C .
ANNALS OF PHYSICS, 1994, 234 (01) :102-140
[2]  
FUCHS J, 1990, AFFINE LIE ALGEBRAS
[3]  
Kac V.G, 1990, INFINITE DIMENSIONAL, Vthird, DOI DOI 10.1017/CBO9780511626234
[4]   DYNKIN DIAGRAMS FOR HYPERBOLIC KAC-MOODY ALGEBRAS [J].
SACLIOGLU, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :3753-3769
[5]   FIELD IDENTIFICATION FIXED-POINTS IN THE COSET CONSTRUCTION [J].
SCHELLEKENS, AN ;
YANKIELOWICZ, S .
NUCLEAR PHYSICS B, 1990, 334 (01) :67-102
[6]   SIMPLE CURRENTS, MODULAR INVARIANTS AND FIXED-POINTS [J].
SCHELLEKENS, AN ;
YANKIELOWICZ, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (15) :2903-2952
[7]   EXTENDED CHIRAL ALGEBRAS AND MODULAR INVARIANT PARTITION-FUNCTIONS [J].
SCHELLEKENS, AN ;
YANKIELOWICZ, S .
NUCLEAR PHYSICS B, 1989, 327 (03) :673-703