An intelligent online machine fault diagnosis system

被引:29
作者
Fong, ACM [1 ]
Hui, SC
机构
[1] Massey Univ, Inst Informat & Math Sci, Albany, New Zealand
[2] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
来源
COMPUTING & CONTROL ENGINEERING JOURNAL | 2001年 / 12卷 / 05期
关键词
Fault diagnosis system - Intelligent online machines;
D O I
10.1049/cce:20010503
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional help desk service relies heavily on the expertise of service personnel. This article describes an intelligent data mining technique that combines neural network and rule-based reasoning with case-based reasoning to mine information from the customer service database for online machine fault diagnosis. This technique has been implemented into a help-desk system that supports online machine fault diagnosis over the Internet.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 7 条
[1]  
Balakrishnan K., 1998, Journal of Intelligent Systems, V8, P239, DOI 10.1515/JISYS.1998.8.3-4.239
[2]   Mining business databases [J].
Brachman, RJ ;
Khabaza, T ;
Kloesgen, W ;
PiatetskyShapiro, G ;
Simoudis, E .
COMMUNICATIONS OF THE ACM, 1996, 39 (11) :42-48
[3]  
EUSTACE R, 1995, P 8 INT C IND ENG AP, P67
[4]  
Fellbaum C, 1998, WORDNET ELECT LEXICA
[5]  
LEES B, 1997, P 5 GERM WORKSH CAS, P139
[6]   Fuzzy neural network in case-based diagnostic system [J].
Liu, ZQ ;
Yan, F .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1997, 5 (02) :209-222
[7]  
Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877