Stable manifolds associated to fixed points with linear part equal to identity

被引:18
作者
Baldomá, I [1 ]
Fontich, E [1 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Analisi, E-08007 Barcelona, Spain
关键词
invariant manifolds; parabolic points;
D O I
10.1016/j.jde.2003.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider maps defined on an open set of Rn+m having a fixed point whose linear part is the identity. We provide sufficient conditions for the existence of a stable manifold in terms of the nonlinear part of the map. These maps arise naturally in some problems of Celestial Mechanics. We apply the results to prove the existence of parabolic orbits of the spatial elliptic three-body problem. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 72
页数:28
相关论文
共 17 条
[1]   Heteroclinic orbits and Bernoulli shift for the elliptic collision restricted three-body problem [J].
Alvarez, M ;
Llibre, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (04) :317-357
[2]  
[Anonymous], 1978, DEGREE THEORY
[3]   INVARIANT-MANIFOLDS FOR A CLASS OF PARABOLIC POINTS [J].
CASASAYAS, J ;
FONTICH, E ;
NUNES, A .
NONLINEARITY, 1992, 5 (05) :1193-1210
[4]   The tetrahedral 4-body problem [J].
Delgado J. ;
Vidal C. .
Journal of Dynamics and Differential Equations, 1999, 11 (4) :735-780
[5]   PARABOLIC ORBITS IN THE PLANAR 3 BODY PROBLEM [J].
EASTON, RW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (01) :116-134
[6]   HOMOCLINIC PHENOMENA FOR ORBITS DOUBLY ASYMPTOTIC TO AN INVARIANT 3-SPHERE [J].
EASTON, RW ;
MCGEHEE, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (02) :211-240
[7]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[9]  
HIRSCH M, 1977, LECT NOTES MATH, V535
[10]  
HIRSCH M, 1970, P S PURE MATH, V14, P133