Current hematopoietic stein cell transplantation protocols rely heavily upon CD34(+) cells to estimate hematopoietic stem and progenitor cell (HSPC) yield. We and others previously reported CD133(+) cells to represent a more primitive cell population than their CD34(+) counterparts. However, both CD34(+) and CD133(+) cells still encompass cells at various stages of maturation, possibly impairing long-term marrow engraftment. Recent studies demonstrated that cells lacking CD34 and hematopoietic lineage markers have the potential of reconstituting long-term in vivo hematopoiesis. We report here an optimized, rapid negative-isolation method that depletes umbilical cord blood (UCB) momonucleated cells (MNC)\ from cells expressing hematopoietic markers (CD45, glycophorin-A, CD38, CD7, CD33, CD56, CD16, CD3, and CD2) and isolates a discrete lineage-negative (Lin(-)) cell population (0.10% +/- 0.02% MNC, n = 12). This primitive Lin- cell population encompassed CD34(+/-) and CD133(+/-) HSPC and was also enriched for surface markers involved in HSPC migration, adhesion, and homing to the bone marrow (CD164, CD162, and CXCR4). Moreover, our depletion method resulted in Lin- cells being highly enriched for long-term culture-initiating cells when compared with both CD133(+) cells and MNC. Furthermore, over 8 weeks in liquid culture stimulated by a cytokine cocktail optimized for HSPC expansion, TPOFLK (thrombopoietin 10 ng/ml, Flt3 ligand 50 ng/ml, c-Kit ligand 20 ng/ml) Lin- cells underwent slow proliferation but maintained/expanded more primitive HSPC than CD133(+) cells. Therefore, our Lin- stem cell offers a promising alternative to current HSPC selection methods. Additionally, this work provides an optimized and well-characterized cell population for expansion of UCB for a wider therapeutic potential, including adult stem cell transplantation.