Autophagy: Basic principles and relevance to disease

被引:443
作者
Kundu, Mondira [1 ]
Thompson, Craig B. [2 ]
机构
[1] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19063 USA
[2] Univ Penn, Abramson Family Canc Res Inst, Philadelphia, PA 19063 USA
关键词
macroautophagy; neurodegeneration; myopathy; infection; immunity; cancer;
D O I
10.1146/annurev.pathmechdis.2.010506.091842
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Autophagy is a process by which cytoplasmic components are sequestered in double membrane vesicles and degraded upon fusion with lysosomal compartments. In yeast, autophagy is activated in response to changes in the extracellular milieu. Depending upon the stimulus, autophagy can degrade cytoplasmic contents non-specifically or can target the degradation of specific cellular components. Both of these have been adopted in higher eukaryotes and account for the expanding role of autophagy in various cellular processes, as well as contribute to the variation in cellular outcomes after induction of autophagy. In some cases, autophagy appears to be an adaptive response, whereas tinder other circumstances it is involved in cell death. In mammals, autophagy has been implicated in either the pathogenesis or response to a wide variety of diseases, including neurodegenerative disease, chronic bacterial and viral infections, atherosclerosis, and cancer. As the basic molecular pathways that regulate autophagy are elucidated, the relationship of autophagy to the pathogenesis of various disease states emerges.
引用
收藏
页码:427 / 455
页数:29
相关论文
共 122 条
[1]   Autophagy delays apoptotic death in breast cancer cells following DNA damage [J].
Abedin, M. J. ;
Wang, D. ;
McDonnell, M. A. ;
Lehmann, U. ;
Kelekar, A. .
CELL DEATH AND DIFFERENTIATION, 2007, 14 (03) :500-510
[2]   Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21 [J].
Aita, VM ;
Liang, XH ;
Murty, VVVS ;
Pincus, DL ;
Yu, WP ;
Cayanis, E ;
Kalachikov, S ;
Gilliam, TC ;
Levine, B .
GENOMICS, 1999, 59 (01) :59-65
[3]   Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway [J].
Al-Younes, HM ;
Brinkmann, V ;
Meyer, TF .
INFECTION AND IMMUNITY, 2004, 72 (08) :4751-4762
[4]   Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma [J].
Amaravadi, Ravi K. ;
Yu, Duonan ;
Lum, Julian J. ;
Bui, Thi ;
Christophorou, Maria A. ;
Evan, Gerard I. ;
Thomas-Tikhonenko, Andrei ;
Thompson, Craig B. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (02) :326-336
[5]   Autophagy is an immediate macrophage response to Legionella pneumophila [J].
Amer, AO ;
Swanson, MS .
CELLULAR MICROBIOLOGY, 2005, 7 (06) :765-778
[6]   Autophagy -: A highway for Porphyromonas gingivalis in endothelial cells [J].
Belanger, Myriam ;
Rodrigues, Paulo H. ;
Dunn, William A., Jr. ;
Progulske-Fox, Ann .
AUTOPHAGY, 2006, 2 (03) :165-170
[7]   Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole [J].
Birmingham, CL ;
Smith, AC ;
Bakowski, MA ;
Yoshimori, T ;
Brumell, JH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (16) :11374-11383
[8]   p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death [J].
Bjorkoy, G ;
Lamark, T ;
Brech, A ;
Outzen, H ;
Perander, M ;
Overvatn, A ;
Stenmark, H ;
Johansen, T .
JOURNAL OF CELL BIOLOGY, 2005, 171 (04) :603-614
[9]   Carney complex: Pathology and molecular genetics [J].
Boikos, Sosipatros A. ;
Stratakis, Constantine A. .
NEUROENDOCRINOLOGY, 2006, 83 (3-4) :189-199
[10]   Programmed cell death via mitochondria: Different modes of dying [J].
Bras, M ;
Queenan, B ;
Susin, SA .
BIOCHEMISTRY-MOSCOW, 2005, 70 (02) :231-+