Crystal Structure of α-Galactosidase from Lactobacillus acidophilus NCFM: Insight into Tetramer Formation and Substrate Binding

被引:62
作者
Fredslund, Folmer [2 ]
Abou Hachem, Maher [2 ]
Larsen, Rene Jonsgaard [2 ]
Sorensen, Pernille Gerd [2 ]
Coutinho, Pedro M. [3 ]
Lo Leggio, Leila [1 ]
Svensson, Birte [2 ]
机构
[1] Univ Copenhagen, Dept Chem, Biophys Chem Grp, DK-2100 Copenhagen O, Denmark
[2] Tech Univ Denmark, Dept Syst Biol Enzyme & Prot Chem, DK-2800 Lyngby, Denmark
[3] Univ Aix Marseille, CNRS, F-13288 Marseille 9, France
关键词
glycoside hydrolase family 36; crystal structure; quaternary structure; substrate specificity; probiotics; MULTIPLE SEQUENCE ALIGNMENT; FUNCTIONAL EXPRESSION; TRICHODERMA-REESEI; MOLECULAR-CLONING; PURIFICATION; IDENTIFICATION; DEGRADATION; METABOLISM; FAMILY; GENE;
D O I
10.1016/j.jmb.2011.07.057
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of alpha-galactosidases (alpha-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of alpha-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-angstrom-resolution crystallographic complex with alpha-D-galactose at substrate binding subsite -1 was determined. LaMel36A has a large N-terminal twisted beta-sandwich domain, connected by a long alpha-helix to the catalytic (beta/alpha)(8)-barrel domain, and a C-terminal beta-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima alpha-Gal (TmGal36A) reveals that O2 of alpha-D-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:466 / 480
页数:15
相关论文
共 54 条
[1]   Structural biology of pectin degradation by Enterobacteriaceae [J].
Abbott, D. Wade ;
Boraston, Alisdair B. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2008, 72 (02) :301-316
[2]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[3]   Cloning and characterization of Aspergillus niger genes encoding an α-galactosidase and a β-mannosidase involved in galactomannan degradation [J].
Ademark, P ;
de Vries, RP ;
Hägglund, P ;
Stålbrand, H ;
Visser, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (10) :2982-2990
[4]   Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM [J].
Altermann, E ;
Russell, WM ;
Azcarate-Peril, MA ;
Barrangou, R ;
Buck, BL ;
McAuliffe, O ;
Souther, N ;
Dobson, A ;
Duong, T ;
Callanan, M ;
Lick, S ;
Hamrick, A ;
Cano, R ;
Klaenhammer, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (11) :3906-3912
[5]   Compositional variations for α-galactosides in different species of Leguminosae, Brassicaceae, and barley:: A chemotaxonomic study based on chemometrics and high-performance capillary electrophoresis [J].
Andersen, KE ;
Bjergegaard, C ;
Moller, P ;
Sorensen, JC ;
Sorensen, H .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2005, 53 (14) :5809-5817
[6]   Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays [J].
Barrangou, R ;
Azcarate-Peril, MA ;
Duong, T ;
Conners, SB ;
Kelly, RM ;
Klaenhammer, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3816-3821
[7]   Identification of a novel α-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus [J].
Brouns, SJJ ;
Smits, N ;
Wu, H ;
Snijders, APL ;
Wright, PC ;
de Vos, WA ;
van der Oost, J .
JOURNAL OF BACTERIOLOGY, 2006, 188 (07) :2392-2399
[8]   Lignocellulose degradation by Phanerochaete chrysosporium:: purification and characterization of the main α-galactosidase [J].
Brumer, H ;
Sims, PFG ;
Sinnott, ML .
BIOCHEMICAL JOURNAL, 1999, 339 :43-53
[9]   Identification, molecular cloning and expression of an α-N-acetylgalactosaminidase gene from Clostridium perfringens [J].
Calcutt, MJ ;
Hsieh, HY ;
Chapman, LF ;
Smith, DS .
FEMS MICROBIOLOGY LETTERS, 2002, 214 (01) :77-80
[10]   The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics [J].
Cantarel, Brandi L. ;
Coutinho, Pedro M. ;
Rancurel, Corinne ;
Bernard, Thomas ;
Lombard, Vincent ;
Henrissat, Bernard .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D233-D238