Asymptotically flat initial data with prescribed regularity at infinity

被引:62
作者
Dain, S [1 ]
Friedrich, H [1 ]
机构
[1] Max Planck Gravitat Phys, D-14476 Golm, Germany
关键词
D O I
10.1007/s002200100524
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate.
引用
收藏
页码:569 / 609
页数:41
相关论文
共 35 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[4]   ON HYPERBOLOIDAL CAUCHY DATA FOR VACUUM EINSTEIN EQUATIONS AND OBSTRUCTIONS TO SMOOTHNESS OF SCRI [J].
ANDERSSON, L ;
CHRUSCIEL, PT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (03) :533-568
[5]   ON THE REGULARITY OF SOLUTIONS TO THE YAMABE EQUATION AND THE EXISTENCE OF SMOOTH HYPERBOLOIDAL INITIAL DATA FOR EINSTEIN FIELD-EQUATIONS [J].
ANDERSSON, L ;
CHRUSCIEL, PT ;
FRIEDRICH, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (03) :587-612
[6]  
[Anonymous], 1995, INTRO PARTIAL DIFFER
[7]  
Aubin Thierry, 1982, GRUNDLEHREN MATH WIS, V252
[8]   Late time behavior of the maximal slicing of the Schwarzschild black hole [J].
Beig, R ;
Murchadha, NO .
PHYSICAL REVIEW D, 1998, 57 (08) :4728-4737
[9]   TRAPPED SURFACES IN VACUUM SPACETIMES [J].
BEIG, R ;
MURCHADHA, NO .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) :419-430
[10]   The momentum constraints of general relativity and spatial conformal isometries [J].
Beig, R ;
Murchadha, NO .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (03) :723-738