Biochemical characterization of human collagenase-3

被引:760
作者
Knauper, V
LopezOtin, C
Smith, B
Knight, G
Murphy, G
机构
[1] STRANGEWAYS RES LAB,DEPT CELL ADHES & SIGNALLING,CAMBRIDGE CB1 4RN,ENGLAND
[2] UNIV OVIEDO,DEPT BIOL FUNC,E-33006 OVIEDO,SPAIN
[3] CELLTECH LTD,SLOUGH SL1 4EN,BERKS,ENGLAND
基金
英国惠康基金;
关键词
D O I
10.1074/jbc.271.3.1544
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cDNA of a novel matrix metalloproteinase, collagenase 3 (MMP-13) has been isolated from a breast tumor library (Freije, J. M. P., Diez-Itza, I., Balbin, M., Sanchez, L. M,, Blasco, R., Tolivia, J., and Lopez-Otin, C. (1994) J. Biol. Chem. 269, 16766-16773), and a potential role in tumor progression has been proposed for this enzyme. In order to establish the possible role of collagenase-3 in connective tissue turnover, we have expressed and purified recombinant human procollagenase-3 and characterized the enzyme biochemically. The purified procollagenase-3 was shown to be glycosylated and displayed a M(r) of 60,000, the N-terminal sequence being LPLPSGGD, which is consistent with the cDNA-predicted sequence. The proenzyme was activated by p-aminophenylmercuric acetate or stromelysin, yielding an intermediate form of M(r) 50,000, which displayed the N-terminal sequence L(58)EVTGK. Further processing resulted in cleavage of the Glu(84)-Tyr(85) peptide bond to the final active enzyme (M(r) 48,000). Trypsin activation of procollagenase-3 also generated a Tyr(85) N terminus, but it was evident that the C-terminal domain was rapidly lost, and hence the collagenolytic activity diminished. Analysis of the substrate specificity of collagenase-3 revealed that soluble type II collagen was preferentially hydrolyzed, while the enzyme was 5 or 6 times less efficient at cleaving type I or III collagen. Fibrillar type I collagen was cleaved with comparable efficiency to the fibroblast and neutrophil collagenases (MMP-1 and MMP-8), respectively. Unlike these collagenases, gelatin and the peptide substrates Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 and Mca-Pro-Cha-Gly-Nva-His-Ala-Dpa-NH2 were efficiently hydrolyzed as well, as would be predicted from the similarities between the active site sequence of collagenase-3 (MMP-13) and the gelatinases A and B. Active collagenase-3 was inhibited in a 1:1 stoichiometric fashion by the tissue inhibitors of metalloproteinases, TIMP-1, TIMP-2, and TIMP-3. These results suggest that in vivo collagenase-3 could play a significant role in the turnover of connective tissue matrix constituents.
引用
收藏
页码:1544 / 1550
页数:7
相关论文
共 41 条
[1]   THE GENE STRUCTURE OF TISSUE INHIBITOR OF METALLOPROTEINASES (TIMP)-3 AND ITS INHIBITORY ACTIVITIES DEFINE THE DISTINCT TIMP GENE FAMILY [J].
APTE, SS ;
OLSEN, BR ;
MURPHY, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (24) :14313-14318
[2]   HIGH-LEVEL EXPRESSION OF A RECOMBINANT ANTIBODY FROM MYELOMA CELLS USING A GLUTAMINE-SYNTHETASE GENE AS AN AMPLIFIABLE SELECTABLE MARKER [J].
BEBBINGTON, CR ;
RENNER, G ;
THOMSON, S ;
KING, D ;
ABRAMS, D ;
YARRANTON, GT .
BIO-TECHNOLOGY, 1992, 10 (02) :169-175
[3]   THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY [J].
BODE, W ;
REINEMER, P ;
HUBER, R ;
KLEINE, T ;
SCHNIERER, S ;
TSCHESCHE, H .
EMBO JOURNAL, 1994, 13 (06) :1263-1269
[4]   STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN FIBROBLAST COLLAGENASE COMPLEXED WITH AN INHIBITOR [J].
BORKAKOTI, N ;
WINKLER, FK ;
WILLIAMS, DH ;
DARCY, A ;
BROADHURST, MJ ;
BROWN, PA ;
JOHNSON, WH ;
MURRAY, EJ .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (02) :106-110
[5]   THE ACTIVATION OF LATENT PIG SYNOVIAL COLLAGENASE [J].
CAWSTON, TE ;
MERCER, E ;
TYLER, JA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 657 (01) :73-83
[6]   FRAGMENTS OF HUMAN FIBROBLAST COLLAGENASE - PURIFICATION AND CHARACTERIZATION [J].
CLARK, IM ;
CAWSTON, TE .
BIOCHEMICAL JOURNAL, 1989, 263 (01) :201-206
[7]   SOLID-PHASE PEPTIDE-SYNTHESIS UTILIZING 9-FLUORENYLMETHOXYCARBONYL AMINO-ACIDS [J].
FIELDS, GB ;
NOBLE, RL .
INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH, 1990, 35 (03) :161-214
[8]  
FREIJE JMP, 1994, J BIOL CHEM, V269, P16766
[9]  
GOLDBERG GI, 1986, J BIOL CHEM, V261, P6600
[10]  
HASTY KA, 1987, J BIOL CHEM, V262, P10048