A curved multi-component aerosol hygroscopicity model framework: Part 1 - Inorganic compounds

被引:189
作者
Topping, DO [1 ]
McFiggans, GB [1 ]
Coe, H [1 ]
机构
[1] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M60 1QD, Lancs, England
关键词
D O I
10.5194/acp-5-1205-2005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A thermodynamic modelling framework to predict the equilibrium behaviour of mixed inorganic salt aerosols is developed, and then coupled with a technique for finding a solution to the Kohler equation in order to create a diameter dependent hygroscopic aerosol model ( Aerosol Diameter Dependent Equilibrium Model - ADDEM). The model described here provides a robust and accurate inorganic basis using a mole fraction based activity coefficient model and adjusted energies of formation for treating solid precipitation. The model framework can accommodate organic components, though this added complexity is considered in a companion paper, this paper describes the development of the modelling architecture to be used and predictions of an inorganic model alone. The modelling framework has been developed to flexibly use a combination of mixing rules and other potentially more accurate techniques where available to calculate the water content. Comparisons with other state-of-the-art general equilibrium models and experimental data are presented and show excellent agreement. The Kelvin effect can be considered in this scheme using a variety of surface tension models. Comparison of predicted diameter dependent phenomena, such as the increased relative humidity for onset of deliquescence with decreasing diameter, with another diameter dependent model is very good despite the different approach used. The model is subject to various sensitivities. For the inorganic systems studied here, the model is sensitive to choice of surface tension scheme used, which decreases for larger aerosol. Large sensitivities are found for the value of dry density used. It is thus likely that the history of the aerosol studied in a hygroscopic tandem differential mobility analyser (HTDMA), specifically the nature of the drying process that will influence the final crystalline form, will create systematic uncertainties upon comparisons with theoretical predictions. However, the magnitudes of all of the above sensitivities are potentially less than those introduced when using a semi ideal growth factor analogue for certain conditions.
引用
收藏
页码:1205 / 1222
页数:18
相关论文
共 96 条
[1]  
[Anonymous], SRCTR92107R5 U MAR
[2]   Prediction of multicomponent inorganic atmospheric aerosol behavior [J].
Ansari, AS ;
Pandis, SN .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (05) :745-757
[3]   ATMOSPHERIC EQUILIBRIUM-MODEL OF SULFATE AND NITRATE AEROSOLS [J].
BASSETT, M ;
SEINFELD, JH .
ATMOSPHERIC ENVIRONMENT, 1983, 17 (11) :2237-2252
[4]   ATMOSPHERIC EQUILIBRIUM-MODEL OF SULFATE AND NITRATE AEROSOLS .2. PARTICLE-SIZE ANALYSIS [J].
BASSETT, ME ;
SEINFELD, JH .
ATMOSPHERIC ENVIRONMENT, 1984, 18 (06) :1163-1170
[5]   CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase [J].
Bilde, M ;
Svenningsson, B .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2004, 56 (02) :128-134
[6]   The Regional Particulate Matter Model .1. Model description and preliminary results [J].
Binkowski, FS ;
Shankar, U .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D12) :26191-26209
[7]  
Brechtel FJ, 2000, J ATMOS SCI, V57, P1854, DOI 10.1175/1520-0469(2000)057<1854:PPCSFH>2.0.CO
[8]  
2
[9]  
Brechtel FJ, 2000, J ATMOS SCI, V57, P1872, DOI 10.1175/1520-0469(2000)057<1872:PPCSFH>2.0.CO
[10]  
2