GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows

被引:40
作者
Bonvin, J
Picasso, M [1 ]
Stenberg, R
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
[2] Tampere Univ Technol, Dept Math, FIN-33101 Tampere, Finland
关键词
D O I
10.1016/S0045-7825(00)00307-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, order one finite elements together with Galerkin least-squares (GLS) methods are used for solving a three-held Stokes problem arising from the numerical study of viscoelastic hows. Stability and convergence results are established, even when the solvent viscosity is small compared to the viscosity due to the polymer chains. An iterative algorithm decoupling velocity-pressure and stress calculations is proposed. The link with the modified elastic viscous split stress (EVSS) method studied in (M. Fortin, R. Guenette, R. Pierre, Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95; R. Guenette, M. Fortin, J. Non-Newtonian Fluid Mech. 60 (1995) 27-52) is presented. Numerical results are in agreement with theoretical predictions, and with those presented in (M. Fortin, R. Guenette, R. Pierre, Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95). (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3893 / 3914
页数:22
相关论文
共 37 条
[1]  
Baaijens FPT, 1998, J NON-NEWTON FLUID, V79, P361, DOI 10.1016/S0377-0257(98)00122-0
[2]   Viscoelastic flow past a confined cylinder of a low density polyethylene melt [J].
Baaijens, FPT ;
Selen, SHA ;
Baaijens, HPW ;
Peters, GWM ;
Meijer, HEH .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1997, 68 (2-3) :173-203
[3]   FINITE-ELEMENT APPROXIMATION OF VISCOELASTIC FLUID-FLOW - EXISTENCE OF APPROXIMATE SOLUTIONS AND ERROR-BOUNDS .1. DISCONTINUOUS CONSTRAINTS [J].
BARANGER, J ;
SANDRI, D .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :13-27
[4]  
Baranger J., 1996, RHEOL SER, V5, P199, DOI [10.1016/S0169-3107(96)80008-6, DOI 10.1016/S0169-3107(96)80008-6]
[5]   STABILIZED FINITE-ELEMENT METHODS FOR THE VELOCITY PRESSURE STRESS FORMULATION OF INCOMPRESSIBLE FLOWS [J].
BEHR, MA ;
FRANCA, LP ;
TEZDUYAR, TE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 104 (01) :31-48
[6]   OPTIMAL FINITE-ELEMENT INTERPOLATION ON CURVED DOMAINS [J].
BERNARDI, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1212-1240
[7]  
Bird R.B., 1987, DYNAMICS POLYM LIQUI, V2
[8]   CONSTITUTIVE-EQUATIONS FOR POLYMERIC LIQUIDS [J].
BIRD, RB ;
WIEST, JM .
ANNUAL REVIEW OF FLUID MECHANICS, 1995, 27 :169-193
[9]   Variance reduction methods for CONNFFESSIT-like simulations [J].
Bonvin, J ;
Picasso, M .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1999, 84 (2-3) :191-215
[10]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15