A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models

被引:611
作者
Fan, S [1 ]
Gloor, M
Mahlman, J
Pacala, S
Sarmiento, J
Takahashi, T
Tans, P
机构
[1] Princeton Univ, Carbon Modeling Consortium, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08542 USA
[3] Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA
[4] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[5] NOAA, Climate Modeling & Diagnost Lab, Boulder, CO 80303 USA
关键词
D O I
10.1126/science.282.5388.442
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atmospheric carbon dioxide increased at a rate of 2.8 petagrams of carbon per year (Pg C year(-1)) during 1988 to 1992 (1 Pg = 10(15) grams). Given estimates of fossil carbon dioxide,emissions, and net oceanic uptake, this implies a global terrestrial uptake of 1.0 to 2.2 Pg C year(-1). The spatial distribution of the terrestrial carbon dioxide uptake is estimated by means of the observed spatial patterns of the greatly increased atmospheric carbon dioxide data set available from 1988 onward, together with two atmospheric transport models, two estimates of the sea-air flux, and an estimate of the spatial distribution of fossil carbon dioxide emissions. North America is the best constrained continent, with a mean uptake of 1.7 +/- 0.5 Pg C year(-1), mostly south of 51 degrees north. Eurasia-North Africa is relatively weakly constrained, with a mean uptake of 0.1 +/- 0.6 Pg C year(-1). The rest of the world's land surface is poorly constrained, with a mean source of 0.2 +/- 0.9 Pg C year(-1).
引用
收藏
页码:442 / 446
页数:5
相关论文
共 39 条
[1]   A 1 degrees x1 degrees distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990 [J].
Andres, RJ ;
Marland, G ;
Fung, I ;
Matthews, E .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (03) :419-429
[2]   A LARGE NORTHERN-HEMISPHERE TERRESTRIAL CO2 SINK INDICATED BY THE C-13/C-12 RATIO OF ATMOSPHERIC CO2 [J].
CIAIS, P ;
TANS, PP ;
TROLIER, M ;
WHITE, JWC ;
FRANCEY, RJ .
SCIENCE, 1995, 269 (5227) :1098-1102
[3]   CAN CLIMATE VARIABILITY CONTRIBUTE TO THE MISSING CO2 SINK [J].
DAI, A ;
FUNG, IY .
GLOBAL BIOGEOCHEMICAL CYCLES, 1993, 7 (03) :599-609
[4]   LATITUDINAL GRADIENT OF ATMOSPHERIC CO2 DUE TO SEASONAL EXCHANGE WITH LAND BIOTA [J].
DENNING, AS ;
FUNG, IY ;
RANDALL, D .
NATURE, 1995, 376 (6537) :240-243
[5]   LATITUDINAL DISTRIBUTION OF SOURCES AND SINKS OF CO2 - RESULTS OF AN INVERSION STUDY [J].
ENTING, IG ;
MANSBRIDGE, JV .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1991, 43 (02) :156-170
[6]   Sensitivity of boreal forest carbon balance to soil thaw [J].
Goulden, ML ;
Wofsy, SC ;
Harden, JW ;
Trumbore, SE ;
Crill, PM ;
Gower, ST ;
Fries, T ;
Daube, BC ;
Fan, SM ;
Sutton, DJ ;
Bazzaz, A ;
Munger, JW .
SCIENCE, 1998, 279 (5348) :214-217
[7]   Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability [J].
Goulden, ML ;
Munger, JW ;
Fan, SM ;
Daube, BC ;
Wofsy, SC .
SCIENCE, 1996, 271 (5255) :1576-1578
[8]   Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest [J].
Greco, S ;
Baldocchi, DD .
GLOBAL CHANGE BIOLOGY, 1996, 2 (03) :183-197
[9]   An improved method for detecting anthropogenic CO2 in the oceans [J].
Gruber, N ;
Sarmiento, JL ;
Stocker, TF .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (04) :809-837
[10]  
HAMILTON K, 1995, J ATMOS SCI, V52, P5, DOI 10.1175/1520-0469(1995)052<0005:COTSTG>2.0.CO