Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti

被引:45
作者
Bittner, Alycia N. [1 ]
Foltz, Amanda [1 ]
Oke, Valerie [1 ]
机构
[1] Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA
关键词
D O I
10.1128/JB.01542-06
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Many bacterial species contain multiple copies of the genes that encode the chaperone GroEL and its cochaperone, GroES, including all of the fully sequenced root-nodulating bacteria that interact symbiotically with legumes to generate fixed nitrogen. In particular, in Sinorhizobium meliloti there are four groESL operons and one groEL gene. To uncover functional redundancies of these genes during growth and symbiosis, we attempted to construct strains containing all combinations of groEL mutations. Although a double groEL1 groEL2 mutant cannot be constructed, we demonstrate that the quadruple groEL1 groESL3 groEL4 groESL5 and groEL2 groESL3 groEL4 groESL5 mutants are viable. Therefore, like E. coli and other species, S. meliloti requires only one groEL gene for viability, and either groEL1 orgroEL2 will suffice. The groEL1 groESL5 double mutant is more severely affected for growth at both 30 degrees C and 40 degrees C than the single mutants, suggesting overlapping functions in stress response. During symbiosis the quadruple groEL2 groESL3 groEL4 groESL5 mutant acts like the wild type, but the quadruple groEL1 groESL3 groEL4 groESL5 mutant acts like the groEL1 single mutant, which cannot fully induce nod gene expression and forms ineffective nodules. Therefore, the only groEL gene required for symbiosis is groEL1. However, we show that the other groE genes are expressed in the nodule at lower levels, suggesting minor roles during symbiosis. Combining our data with other data, we conclude that groESL1 encodes the housekeeping GroEL/GroES chaperone and that groESL5 is specialized for stress response.
引用
收藏
页码:1884 / 1889
页数:6
相关论文
共 48 条
[11]   Chaperonins govern growth of Escherichia coli at low temperatures [J].
Ferrer, M ;
Chernikova, TN ;
Yakimov, MM ;
Golyshin, PN ;
Timmis, KN .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1266-1267
[12]   COMPLEX SYMBIOTIC PHENOTYPES RESULT FROM GLUCONEOGENIC MUTATIONS IN RHIZOBIUM-MELILOTI [J].
FINAN, TM ;
MCWHINNIE, E ;
DRISCOLL, B ;
WATSON, RJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1991, 4 (04) :386-392
[13]   ONE MEMBER OF A GROESL-LIKE CHAPERONIN MULTIGENE FAMILY IN BRADYRHIZOBIUM-JAPONICUM IS COREGULATED WITH SYMBIOTIC NITROGEN-FIXATION GENES [J].
FISCHER, HM ;
BABST, M ;
KASPAR, T ;
ACUNA, G ;
ARIGONI, F ;
HENNECKE, H .
EMBO JOURNAL, 1993, 12 (07) :2901-2912
[14]   GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum [J].
Fischer, HM ;
Schneider, K ;
Babst, M ;
Hennecke, H .
ARCHIVES OF MICROBIOLOGY, 1999, 171 (04) :279-289
[15]   The composite genome of the legume symbiont Sinorhizobium meliloti [J].
Galibert, F ;
Finan, TM ;
Long, SR ;
Pühler, A ;
Abola, P ;
Ampe, F ;
Barloy-Hubler, F ;
Barnett, MJ ;
Becker, A ;
Boistard, P ;
Bothe, G ;
Boutry, M ;
Bowser, L ;
Buhrmester, J ;
Cadieu, E ;
Capela, D ;
Chain, P ;
Cowie, A ;
Davis, RW ;
Dréano, S ;
Federspiel, NA ;
Fisher, RF ;
Gloux, S ;
Godrie, T ;
Goffeau, A ;
Golding, B ;
Gouzy, J ;
Gurjal, M ;
Hernandez-Lucas, I ;
Hong, A ;
Huizar, L ;
Hyman, RW ;
Jones, T ;
Kahn, D ;
Kahn, ML ;
Kalman, S ;
Keating, DH ;
Kiss, E ;
Komp, C ;
Lalaure, V ;
Masuy, D ;
Palm, C ;
Peck, MC ;
Pohl, TM ;
Portetelle, D ;
Purnelle, B ;
Ramsperger, U ;
Surzycki, R ;
Thébault, P ;
Vandenbol, M .
SCIENCE, 2001, 293 (5530) :668-672
[16]   Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties [J].
George, R ;
Kelly, SM ;
Price, NC ;
Erbse, A ;
Fisher, M ;
Lund, PA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 324 (02) :822-828
[17]   Chaperonin genes of the Synechocystis PCC 6803 are differentially regulated under light-dark transition during heat stress [J].
Glatz, A ;
Horvath, I ;
Varvasovszki, V ;
Kovacs, E ;
Torok, Z ;
Vigh, L .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 239 (01) :291-297
[18]   The partitioned Rhizobium etli genome:: Genetic and metabolic redundancy in seven interacting replicons [J].
González, V ;
Santamaria, RI ;
Bustos, P ;
Hernández-González, I ;
Medrano-Soto, A ;
Moreno-Hagelsieb, G ;
Janga, SC ;
Ramírez, MA ;
Jiménez-Jacinto, V ;
Collado-Vides, J ;
Dávila, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3834-3839
[19]  
Gross C.A., 1996, ESCHERICHIA COLI SAL, V1, P1382
[20]   THE HTPR GENE-PRODUCT OF ESCHERICHIA-COLI IS A SIGMA-FACTOR FOR HEAT-SHOCK PROMOTERS [J].
GROSSMAN, AD ;
ERICKSON, JW ;
GROSS, CA .
CELL, 1984, 38 (02) :383-390