Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex

被引:67
作者
Ali, AB
Rossier, J
Staiger, JF
Audinat, E
机构
[1] Ecole Super Phys & Chim Ind, Lab Neurobiol & Divers Cellulaire, CNRS, UMR 7637, F-75231 Paris 5, France
[2] Univ Dusseldorf, D-40001 Dusseldorf, Germany
[3] O Vogt Inst Brain Res, D-40001 Dusseldorf, Germany
基金
英国惠康基金;
关键词
GYKI; kainate receptors; ATPA; neocortical pyramidal cells; neocortical fast spiking interneurons; IPSC; EPSC;
D O I
10.1523/JNEUROSCI.21-09-02992.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Unitary IPSCs elicited by fast-spiking (FS) interneurons in layer V pyramidal cells of the neocortex were studied by means of dual whole-cell recordings in acute slices. FS to pyramidal cell unitary IPSCs were depressed by (RS)-S-amino-3-(3-hydroxy-5-tertbutylisoxazol-4-yl) (ATPA), a kainate (KA) receptor agonist, and by the endogenous agonist L-glutamate in the presence of AMPA, NMDA, mGluR, and GABA(B) receptor antagonists. This effect was accompanied by an increase in failure rate of synaptic transmission, in the coefficient of variation, and in the paired pulse ratio, indicating a presynaptic origin of the IPSC depression. Pairing the activation of the presynaptic neuron with a depolarization of the postsynaptic cell mimicked the decrease of unitary IPSCs, and this effect persisted when postsynaptic sodium action potentials were blocked with the local anesthetic QX314. The effects of ATPA, glutamate, and of the pairing protocol were almost totally blocked by CNQX. These data suggest that KA receptors located on presynaptic FS cell terminals decrease the release of GABA and can be activated by glutamate released from the somatodendritic compartment of the postsynaptic pyramidal cells.
引用
收藏
页码:2992 / 2999
页数:8
相关论文
共 45 条
  • [1] RETROGRADE SIGNALING AT GABA(A)-RECEPTOR SYNAPSES IN THE MAMMALIAN CNS
    ALGER, BE
    PITLER, TA
    [J]. TRENDS IN NEUROSCIENCES, 1995, 18 (08) : 333 - 340
  • [2] Angulo MC, 1999, J NEUROSCI, V19, P1566
  • [3] Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex
    Angulo, MC
    Rossier, J
    Audinat, E
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (03) : 1295 - 1302
  • [4] BAHN S, 1994, J NEUROSCI, V14, P5525
  • [5] ORIGIN OF VARIABILITY IN QUANTAL SIZE IN CULTURED HIPPOCAMPAL-NEURONS AND HIPPOCAMPAL SLICES
    BEKKERS, JM
    RICHERSON, GB
    STEVENS, CF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (14) : 5359 - 5362
  • [6] Bureau I, 1999, J NEUROSCI, V19, P653
  • [7] Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons
    Castillo, PE
    Malenka, RC
    Nicoll, RA
    [J]. NATURE, 1997, 388 (6638) : 182 - 186
  • [8] Cauli B, 1997, J NEUROSCI, V17, P3894
  • [9] Classification of fusiform neocortical interneurons based on unsupervised clustering
    Cauli, B
    Porter, JT
    Tsuzuki, K
    Lambolez, B
    Rossier, J
    Quenet, B
    Audinat, E
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) : 6144 - 6149
  • [10] Kainate receptors: subunits, synaptic localization and function
    Chittajallu, R
    Braithwaite, SP
    Clarke, VRJ
    Henley, JM
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 1999, 20 (01) : 26 - 35