Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect

被引:167
作者
Liu, Ying-Ya
Zeng, Ju-Lan
Zhang, Jian
Xu, Fen [1 ]
Sun, Li-Xian
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Mat & Thermochem Lab, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen storage; metal-organic frameworks; hydrogen spillover;
D O I
10.1016/j.ijhydene.2007.04.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, in order to enhance hydrogen storage capacity of metal-organic frameworks (MOFs) at room temperature, two ways are carried out for MOFs modification. One is a simple doping of metal-supported carbon catalyst with MOFs; the other is doping metal-supported carbon catalyst through a carbon bridge with MOFs. Pressure-composition (P-C) isotherms of these modified and unmodified samples are investigated using Severts-type apparatus at 293 K and the pressure ranging from 0.01 to 5.0 Mpa. Through these modification techniques based on the hydrogen spillover effect, especially the carbon-bridged catalyst doping technique, the modified samples witnessed a great increase in hydrogen uptakes when compared with the pristine samples. The storage capacity of modified MTL-101 and MIL-53 at 5.0MPa and 293 K are found to be 1.14 and 0.63 wt%, which are greatly increased as compared to the pristine-MOFs. (c) 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4005 / 4010
页数:6
相关论文
共 33 条
[1]   Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J].
Bogdanovic, B ;
Brand, RA ;
Marjanovic, A ;
Schwickardi, M ;
Tölle, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) :36-58
[2]   A route to high surface area, porosity and inclusion of large molecules in crystals [J].
Chae, HK ;
Siberio-Pérez, DY ;
Kim, J ;
Go, Y ;
Eddaoudi, M ;
Matzger, AJ ;
O'Keeffe, M ;
Yaghi, OM .
NATURE, 2004, 427 (6974) :523-527
[3]   High H2 adsorption in a microporous metal-organic framework with open metal sites [J].
Chen, BL ;
Ockwig, NW ;
Millward, AR ;
Contreras, DS ;
Yaghi, OM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) :4745-4749
[4]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[5]   Review of hydrogen storage by adsorption in carbon nanotubes [J].
Darkrim Lamari, F ;
Malbrunot, P ;
Tartaglia, GP .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (02) :193-202
[6]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[7]   Hydrogen storage using carbon adsorbents: past, present and future [J].
Dillon, AC ;
Heben, MJ .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (02) :133-142
[8]   A chromium terephthalate-based solid with unusually large pore volumes and surface area [J].
Férey, G ;
Mellot-Draznieks, C ;
Serre, C ;
Millange, F ;
Dutour, J ;
Surblé, S ;
Margiolaki, I .
SCIENCE, 2005, 309 (5743) :2040-2042
[9]   Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53 [J].
Férey, G ;
Latroche, M ;
Serre, C ;
Millange, F ;
Loiseau, T ;
Percheron-Guégan, A .
CHEMICAL COMMUNICATIONS, 2003, (24) :2976-2977
[10]   Highly interpenetrated metal-organic frameworks for hydrogen storage [J].
Kesanli, B ;
Cui, Y ;
Smith, MR ;
Bittner, EW ;
Bockrath, BC ;
Lin, WB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (01) :72-75