Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats

被引:107
作者
Maldonado, Monica A. [1 ]
Allred, Rachel P. [2 ]
Felthauser, Erik L. [1 ]
Jones, Theresa A. [1 ,2 ]
机构
[1] Univ Texas Austin, Inst Neurosci, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA
关键词
exercise; rehabilitation; skilled reaching; experience-dependent plasticity;
D O I
10.1177/1545968307308551
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose. Exercise and rehabilitative training each have been implicated in the promotion of restorative neural plasticity after cerebral injury. Because motor skill training induces synaptic plasticity and exercise increases plasticity-related proteins, we asked if exercise could improve the efficacy of training on a skilled motor task after focal cortical lesions. Methods. Female young and middle-aged rats were trained on the single-pellet retrieval task and received unilateral ischemic sensorimotor cortex lesions contralateral to the trained limb. Rats then received both, either, or neither voluntary running and/or rehabilitative training for 5 weeks beginning 5 days postlesion. Motor skill training consisted of daily practice of the impaired forelimb in a tray-reaching task. Exercised rats had free access to running wheels for 6 h/day. Reaching function was periodically probed using the single-pellet retrieval task. Results. In young adults, motor skill training significantly enhanced skilled reaching recovery compared to controls. However, exercise did not significantly enhance performance when administered alone or in combination with skill training. There was also no major benefit of exercise in older rats. Additionally, there were no effects of exercise in a measure of coordinated forelimb placement (the foot-fault test) or in immunocytochemical measures of several plasticity-related proteins in the motor cortex. Conclusions. In young and middle-aged animals, exercise did not improve motor skill training efficacy following ischemic lesions. Practicing motor skills more effectively improved recovery of these skills than did exercise. It remains possible that an alternative manner of administering exercise would be more effective.
引用
收藏
页码:250 / 261
页数:12
相关论文
共 71 条
[1]   Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord [J].
Adkins, DeAnna L. ;
Boychuk, Jeffery ;
Remple, Michael S. ;
Kleim, Jeffrey A. .
JOURNAL OF APPLIED PHYSIOLOGY, 2006, 101 (06) :1776-1782
[2]   D-Amphetamine enhances skilled reaching after ischemic cortical lesions in rats [J].
Adkins, DL ;
Jones, TA .
NEUROSCIENCE LETTERS, 2005, 380 (03) :214-218
[3]   Behavioral and neuroplastic effects of focal endothelin-1 induced sensorimotor cortex lesions [J].
Adkins, DL ;
Voorhies, AC ;
Jones, TA .
NEUROSCIENCE, 2004, 128 (03) :473-486
[4]   Cortical electrical stimulation combined with rehabilitative training: Enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats [J].
Adkins-Muir, DL ;
Jones, TA .
NEUROLOGICAL RESEARCH, 2003, 25 (08) :780-788
[5]   The timecourse of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise [J].
Adlard, PA ;
Perreau, VM ;
Engesser-Cesar, C ;
Cotman, CW .
NEUROSCIENCE LETTERS, 2004, 363 (01) :43-48
[6]   Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines [J].
Allen, PB ;
Ouimet, CC ;
Greengard, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (18) :9956-9961
[7]   Unilateral ischemic sensorimotor cortical damage in female rats: forelimb behavioral effects and dendritic structural plasticity in the contralateral homotopic cortex [J].
Allred, RP ;
Jones, TA .
EXPERIMENTAL NEUROLOGY, 2004, 190 (02) :433-445
[8]   Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys [J].
Barbay, S ;
Plautz, EJ ;
Friel, KM ;
Frost, SB ;
Dancause, N ;
Stowe, AM ;
Nudo, RJ .
EXPERIMENTAL BRAIN RESEARCH, 2006, 169 (01) :106-116
[9]   FUNCTIONAL SUBDIVISIONS OF THE RAT SOMATIC SENSORIMOTOR CORTEX [J].
BARTH, TM ;
JONES, TA ;
SCHALLERT, T .
BEHAVIOURAL BRAIN RESEARCH, 1990, 39 (01) :73-95
[10]   Efficacy of rehabilitative experience declines with time after focal ischemic brain injury [J].
Biernaskie, J ;
Chernenko, G ;
Corbett, D .
JOURNAL OF NEUROSCIENCE, 2004, 24 (05) :1245-1254