Electrospun Fibers of Functional Nanocomposites Composed of Single-Walled Carbon Nanotubes, Fullerene Derivatives, and Poly(3-Hexylthiophene)

被引:19
作者
Bounioux, Celine [2 ]
Itzhak, Racheli [1 ]
Avrahami, Ron [3 ]
Zussman, Eyal [3 ]
Frey, Joseph [4 ,5 ]
Katz, Eugene A. [2 ,6 ]
Yerushalmi-Rozen, Rachel [1 ,6 ]
机构
[1] Ben Gurion Univ Negev, Dept Chem Engn, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Dept Solar Energy & Environm Phys, IL-84990 Sede Boqer, Israel
[3] Technion Israel Inst Technol, Dept Mech Engn, IL-32000 Haifa, Israel
[4] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[5] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel
[6] Ben Gurion Univ Negev, Ilze Katz Inst Nanoscale Sci & Technol, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
block copolymers; carbon nanotubes; fullerenes; interfaces; photophysics; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); POLYMER NANOFIBERS; MORPHOLOGY; CELLS;
D O I
10.1002/polb.22281
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Electrospinning of fibers composed of poly(3-hexylthiophene) (P3HT), fullerene derivative, phenyl-C-61-butyric acid methyl ester (PCBM), and single-walled carbon nanotubes (SWNT) is reported. While of great promise for photovoltaic applications, morphological control of functional structures is a great challenge for most processing methods. It is demonstrated that the use of a tailor-made block-Copolymer for dispersion of individual SWNT enables the preparation of stable dispersions of individual tubes that may be further cospun from chloroform solutions with PCBM and P3HT into submicron fibers. The block copolymer used to mediate the colloidal and interfacial interactions in the combined system enables the spinning of centimeters long and uniform fibers. Structural characterization indicates a high degree of ordering and alignment within the fibers and absorption and quenching of the photoluminescence indicate significant interactions among the components. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1263-1268, 2011
引用
收藏
页码:1263 / 1268
页数:6
相关论文
共 39 条
[1]   Effect of supramolecular structure on polymer nanofibre elasticity [J].
Arinstein, Arkadii ;
Burman, Michael ;
Gendelman, Oleg ;
Zussman, Eyal .
NATURE NANOTECHNOLOGY, 2007, 2 (01) :59-62
[2]   Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J].
Bao, Z ;
Dodabalapur, A ;
Lovinger, AJ .
APPLIED PHYSICS LETTERS, 1996, 69 (26) :4108-4110
[3]   Development of Energy Generating Photovoltaic Textile Structures for Smart Applications [J].
Bedeloglu, Ayse ;
Koeppe, Robert ;
Demir, Ali ;
Bozkurt, Yalcin ;
Sariciftci, Niyazi Serdar .
FIBERS AND POLYMERS, 2010, 11 (03) :378-383
[4]   A Photovoltaic Fiber Design for Smart Textiles [J].
Bedeloglu, Ayse ;
Demir, Ali ;
Bozkurt, Yalcin ;
Sariciftci, Niyazi Serdar .
TEXTILE RESEARCH JOURNAL, 2010, 80 (11) :1065-1074
[5]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[6]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[7]  
2-A
[8]   Predicting the mechanical and electrical properties of nanocomposites formed from polymer blends and nanorods [J].
Buxton, GA ;
Balazs, AC .
MOLECULAR SIMULATION, 2004, 30 (04) :249-257
[9]   Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J].
Chen, Li-Min ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
ADVANCED MATERIALS, 2009, 21 (14-15) :1434-1449
[10]   Control of Self Organization in Conjugated Polymer Fibers [J].
Chuangchote, Surawut ;
Fujita, Michiyasu ;
Sagawa, Takashi ;
Sakaguchi, Hiroshi ;
Yoshikawa, Susumu .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (11) :2995-2997