Novel tin oxide spinel-based anodes for Li-ion batteries

被引:113
作者
Conner, PA [1 ]
Irvine, JTS [1 ]
机构
[1] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
关键词
lithium-ion battery; lithium alloy anode; tin oxide; tin oxide spinels; transition metal oxide;
D O I
10.1016/S0378-7753(01)00545-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a series of inverse spinel M2SnO4 (M = Mg, Mn, Co) oxides were produced and tested to probe the effect the oxide matrix has on the electrochemical performance of tin oxides. Generally, these new oxides show similar behaviour to SnO2 with the formation of a more complicated mixed metal oxide matrix affecting the potentials of tin reduction and lithium insertion. A reasonable correlation is observed between the potential of the initial reduction of the spinel oxide to metallic tin and the enthalpy of formation of the metal oxide (MO). Amongst the spinels, Mn2SnO4 exhibits the best reversibility and Mg2SnO4 the worst. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:223 / 225
页数:3
相关论文
共 5 条
  • [1] Novel tin oxide-based anodes for Li-ion batteries
    Belliard, F
    Connor, PA
    Irvine, JTS
    [J]. SOLID STATE IONICS, 2000, 135 (1-4) : 163 - 167
  • [2] Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites
    Courtney, IA
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) : 2045 - 2052
  • [3] GOZDZ AS, 1996, Patent No. 5552239
  • [4] Tin-based amorphous oxide: A high-capacity lithium-ion-storage material
    Idota, Y
    Kubota, T
    Matsufuji, A
    Maekawa, Y
    Miyasaka, T
    [J]. SCIENCE, 1997, 276 (5317) : 1395 - 1397
  • [5] STARK JG, 1992, CHEM DATA BOOK