Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation

被引:418
作者
Frank, SR [1 ]
Schroeder, M [1 ]
Fernandez, P [1 ]
Taubert, S [1 ]
Amati, B [1 ]
机构
[1] DNAX Res Inst Mol & Cellular Biol Inc, Dept Oncol, Palo Alto, CA 94304 USA
关键词
chromatin; histone acetylation; Myc; TRRAP; HAT; nucleolin;
D O I
10.1101/gad.906601
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Myc protein binds DNA and activates transcription by mechanisms that are still unclear. We used chromatin immunoprecipitation (ChIP) to evaluate Myc-dependent changes in histone acetylation at seven target loci. Upon serum stimulation of Rat1 fibroblasts, Myc associated with chromatin, histone H4 became locally hyperacetylated, and gene expression was induced. These responses were lost or severely impaired in Myc-deficient cells, but were restored by adenoviral delivery of Myc simultaneous with mitogenic stimulation. When targeted to chromatin in the absence of mitogens, Myc directly induced H4 acetylation. In addition, Myc recruited TRRAP to chromatin, consistent with a role for this cofactor in histone acetylation. Finally, unlike serum, Myc alone was very inefficient in inducing expression of most target genes. Myc therefore governs a step, most likely H4 acetylation, that is required but not sufficient for transcriptional activation. We propose that Myc acts as a permissive factor, allowing additional signals to activate target promoters.
引用
收藏
页码:2069 / 2082
页数:14
相关论文
共 62 条
  • [1] Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter
    Agalioti, T
    Lomvardas, S
    Parekh, B
    Yie, JM
    Maniatis, T
    Thanos, D
    [J]. CELL, 2000, 103 (04) : 667 - 678
  • [2] NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p
    Allard, S
    Utley, RT
    Savard, J
    Clarke, A
    Grant, P
    Brandl, CJ
    Pillus, L
    Workman, JL
    Côté, J
    [J]. EMBO JOURNAL, 1999, 18 (18) : 5108 - 5119
  • [3] Function of the c-Myc oncoprotein in chromatin remodeling and transcription
    Amati, B
    Frank, SR
    Donjerkovic, D
    Taubert, S
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2001, 1471 (03): : M135 - M145
  • [4] APARICIO OM, 1999, CURRENT PROTOCOLS MO
  • [5] A SWITCH FROM MYC-MAX TO MAD-MAX HETEROCOMPLEXES ACCOMPANIES MONOCYTE/MACROPHAGE DIFFERENTIATION
    AYER, DE
    EISENMAN, RN
    [J]. GENES & DEVELOPMENT, 1993, 7 (11) : 2110 - 2119
  • [6] THE ORNITHINE DECARBOXYLASE GENE IS A TRANSCRIPTIONAL TARGET OF C-MYC
    BELLOFERNANDEZ, C
    PACKHAM, G
    CLEVELAND, JL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (16) : 7804 - 7808
  • [7] N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis
    Boon, K
    Caron, HN
    van Asperen, R
    Valentijn, L
    Hermus, MC
    van Sluis, P
    Roobeek, I
    Weis, I
    Voûte, PA
    Schwab, M
    Versteeg, R
    [J]. EMBO JOURNAL, 2001, 20 (06) : 1383 - 1393
  • [8] Regulation of cyclin D2 gene expression by the Myc/Max/Mad network:: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter
    Bouchard, C
    Dittrich, O
    Kiermaier, A
    Dohmann, K
    Menkel, A
    Eilers, M
    Lüscher, B
    [J]. GENES & DEVELOPMENT, 2001, 15 (16) : 2042 - 2047
  • [9] Boyd KE, 1999, MOL CELL BIOL, V19, P8393
  • [10] Myc versus USF: Discrimination at the cad gene is determined by core promoter elements
    Boyd, KE
    Farnham, PJ
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (05) : 2529 - 2537