Cytological and molecular analyses of non-host resistance of Arabidopsis thaliana to Alternaria alternata

被引:26
作者
Narusaka, Y
Narusaka, M
Seki, M
Ishida, J
Shinozaki, K
Nan, Y
Park, P
Shiraishi, T
Kobayashi, M
机构
[1] Tokyo Gakugei Univ, Dept Biol, Tokyo 1848501, Japan
[2] RIKEN, Genom Sci Ctr, Yokohama Inst,Plant Funct Genom Res Grp, Plant Mutat Explorat Team,Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[3] RIKEN, Tsukuba Inst, Plant Mol Biol Lab, Tsukuba, Ibaraki 3050074, Japan
[4] Kobe Univ, Grad Sch Sci & Technol, Nada Ku, Kobe, Hyogo 6578501, Japan
[5] Okayama Univ, Fac Agr, Lab Plant Pathol & Genet Engn, Okayama 7008530, Japan
[6] RIKEN, Bio Resource Ctr, Expt Plant Div, Tsukuba, Ibaraki 3050074, Japan
关键词
D O I
10.1111/J.1364-3703.2005.00310.X
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
When challenged with the necrotrophic fungal pathogen Alternaria alternata Japanese pear pathotype, all tested ecotypes of Arabidopsis plants failed to show hypersensitive cell death, accumulation of detectable levels of reactive oxygen species or accumulation of phytoalexin. We operationally define A. alternata as a non-host pathogen for Arabidopsis plants and show that the protection against A. alternata demonstrated in this study is a non-host penetration resistance. To characterize non-host penetration resistance, we examined the expression patterns of c. 7000 genes by cDNA microarray analysis in Arabidopsis Col-0 plants after inoculation with A. alternata. After inoculation with A. alternata, the transcript levels of 48 genes increased in Col-0 plants. The expression of genes associated with hypersensitive reaction was induced in the non-host penetration resistance to A. alternata, despite the fact that A. alternata had no visible effect on the plants. The non-host penetration resistance to A. alternata was clearly associated with activation of the jasmonate- and ethylene-signalling pathways. In addition, analysis using histochemical staining of GUS activity suggests that defence reactions in non-host penetration resistance are activated locally. The characterization of non-host pathosystem involving Arabidopsis and A. alternata offers an overview of non-host penetration resistance.
引用
收藏
页码:615 / 627
页数:13
相关论文
共 58 条
[1]   BIOCHEMICAL-MECHANISMS OF DISEASE RESISTANCE [J].
BELL, AA .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1981, 32 :21-81
[2]   ELICITOR-INDUCED AND WOUND-INDUCED OXIDATIVE CROSS-LINKING OF A PROLINE-RICH PLANT-CELL WALL PROTEIN - A NOVEL, RAPID DEFENSE RESPONSE [J].
BRADLEY, DJ ;
KJELLBOM, P ;
LAMB, CJ .
CELL, 1992, 70 (01) :21-30
[3]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[4]   MOLECULAR SIGNALS IN THE INTERACTIONS BETWEEN PLANTS AND MICROBES [J].
CLARKE, HRG ;
LEIGH, JA ;
DOUGLAS, CJ .
CELL, 1992, 71 (02) :191-199
[5]   Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis [J].
Clarke, JD ;
Volko, SM ;
Ledford, H ;
Ausubel, FM ;
Dong, XN .
PLANT CELL, 2000, 12 (11) :2175-2190
[6]   SNARE-protein-mediated disease resistance at the plant cell wall [J].
Collins, NC ;
Thordal-Christensen, H ;
Lipka, V ;
Bau, S ;
Kombrink, E ;
Qiu, JL ;
Hückelhoven, R ;
Stein, M ;
Freialdenhoven, A ;
Somerville, SC ;
Schulze-Lefert, P .
NATURE, 2003, 425 (6961) :973-977
[7]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250
[8]   Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response [J].
Delledonne, M ;
Zeier, J ;
Marocco, A ;
Lamb, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :13454-13459
[9]   Regulation of the Arabidopsis transcriptome by oxidative stress [J].
Desikan, R ;
Mackerness, SAH ;
Hancock, JT ;
Neill, SJ .
PLANT PHYSIOLOGY, 2001, 127 (01) :159-172
[10]  
EBEL J, 1994, INT REV CYTOL, V148, P1