Effect of multiwalled carbon nanotube (M-CNT) loading on M-CNT distribution behavior and the related electromechanical properties of the M-CNT dispersed ionomeric nanocomposites

被引:73
作者
Lee, DY [1 ]
Lee, MH
Kim, KJ
Heo, S
Kim, BY
Lee, SJ
机构
[1] Daelim Coll Technol, Dept Mat Engn, Anyang 431715, South Korea
[2] Korea Inst Ceram Engn & Technol, Next Generat Enterprise Grp, Seoul 153801, South Korea
[3] Univ Nevada, Dept Mech Engn, Act Mat & Proc Lab, Reno, NV 89557 USA
[4] Univ Incheon, Dept Mat Sci & Engn, Inchon 402749, South Korea
[5] Kyungsung Univ, Dept Adv Mat Engn, Pusan 608736, South Korea
关键词
multiwalled carbon nanotube (M-CNT); Nafion; ionic polymer-metal composite (IPMC); M-CNT bundle; actuation property; equivalent RC circuit;
D O I
10.1016/j.surfcoat.2005.08.024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The multiwalled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by a method of solution casting and then characterized by using X-ray diffraction (XRD), thermogravinietry/differential scanning calorimetry (TG/DSC), scanning and transmission electron microscopy (SEM/TEM) to evaluate the effect of M-CNT loading in the range of 0 to 7 wt.% on M-CNT distribution behavior and the related electromechanical properties of the composites. The M-CNT bundles induced by the Nation polymer was uniformly. distributed for the I wt.% M-CNT/Nafion nanocomposites, exhibiting the highest elastic modulus and improved electromechanical properties. However, further M-CNT loading caused a heterogeneous distribution of M-CNT bundles and a negative impact on the connectivity within the Nafion matrix, giving rise to poor actuation properties. An appropriate equivalent circuit model was proposed to evaluate the effect of capacitance and resistance of M-CNT/polymer nanocomposites. In conclusion, it is found that the actuation properties of the nanocomposites are primarily governed by the M-CNT distribution behavior within the polymer matrix. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1920 / 1925
页数:6
相关论文
共 13 条
[1]  
BARCOHEN Y, 2004, ELECTROACTIVE POLYM, P139
[2]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[3]   Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry [J].
Bom, D ;
Andrews, R ;
Jacques, D ;
Anthony, J ;
Chen, BL ;
Meier, MS ;
Selegue, JP .
NANO LETTERS, 2002, 2 (06) :615-619
[4]  
GIERKE TD, 1982, ACS SYM SER, V180, P195
[5]   Boron-doping effects in carbon nanotubes [J].
Hsu, WK ;
Firth, S ;
Redlich, P ;
Terrones, M ;
Terrones, H ;
Zhu, YQ ;
Grobert, N ;
Schilder, A ;
Clark, RJH ;
Kroto, HW ;
Walton, DRM .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (06) :1425-1429
[6]   A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles [J].
Kim, KJ ;
Shahinpoor, M .
POLYMER, 2002, 43 (03) :797-802
[7]   Single wall carbon nanotube-Nafion composite actuators [J].
Landi, BJ ;
Raffaelle, RP ;
Heben, MJ ;
Alleman, JL ;
VanDerveer, W ;
Gennett, T .
NANO LETTERS, 2002, 2 (11) :1329-1332
[8]   Electrically controllable biomimetic actuators made with multiwalled carbon nanotube(MWNT) loaded ionorneric nanocomposites [J].
Lee, DY ;
Heo, S ;
Kim, KJ ;
Kim, D ;
Lee, MH ;
Lee, SJ .
BIOCERAMICS 17, 2005, 284-286 :733-736
[9]   An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nano-composite technique [J].
Paquette, JW ;
Kim, KJ ;
Nam, JD ;
Tak, YS .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2003, 14 (10) :633-642
[10]   Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering [J].
Rao, AM ;
Eklund, PC ;
Bandow, S ;
Thess, A ;
Smalley, RE .
NATURE, 1997, 388 (6639) :257-259