Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides

被引:90
作者
Park, Sung Bin [1 ]
Shin, Ho Chul [1 ,2 ]
Lee, Wan-Gyu [1 ]
Cho, Won Il [2 ]
Jang, Ho [1 ]
机构
[1] Korea Univ, Coll Engn, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Korea Inst Sci & Technol, Econano Res Ctr, Seoul 136791, South Korea
关键词
LiMn2O4; coating; amphoteric oxide; lithium-ion battery; capacity fading hydrofluoric acid scavenging;
D O I
10.1016/j.jpowsour.2008.01.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The capacity fading of LiMn2O4 is improved by adding amphoteric oxides such as Al2O3, ZnO, SnO2, and ZrO2 to the cathode slurry. The effectiveness of the amphoteric oxides on the fade resistance of LiMn2O4 is compared by measuring the capability of scavenging hydrofluoric acid (HF) in the electrolyte by the oxides using a pH meter and by BET surface analysis. Results suggest that the capacity fading is determined by the reactivity of oxides with HF and the effective surface-area of the oxide particles when they were mixed in the slurry. Zinc oxide is the most effective of the oxides in scavenging HF. (C) 2008 Elsevier B.V All rights reserved.
引用
收藏
页码:597 / 601
页数:5
相关论文
共 21 条
[1]   X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 566 (01) :187-192
[2]   Self-discharge of LiMn2O4/C Li-ion cells in their discharged state -: Understanding by means of three-electrode measurements [J].
Blyr, A ;
Sigala, C ;
Amatucci, G ;
Guyomard, D ;
Chabre, Y ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :194-209
[3]   Mechanism for limited 55°C storage performance of Li1.05Mn1.95O4 electrodes [J].
Du Pasquier, A ;
Blyr, A ;
Courjal, P ;
Larcher, D ;
Amatucci, G ;
Gérand, B ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (02) :428-436
[4]   Aluminum oxide as a multi-function agent for improving battery performance of LiMn2O4 cathode [J].
Eftekhari, A .
SOLID STATE IONICS, 2004, 167 (3-4) :237-242
[5]   Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries [J].
He, XM ;
Li, JJ ;
Cai, Y ;
Wang, YW ;
Ying, JR ;
Jiang, CY ;
Wan, CR .
JOURNAL OF POWER SOURCES, 2005, 150 :216-222
[6]   PREPARATION OF A NEW CRYSTAL FORM OF MANGANESE-DIOXIDE - LAMBDA-MNO2 [J].
HUNTER, JC .
JOURNAL OF SOLID STATE CHEMISTRY, 1981, 39 (02) :142-147
[7]   The electrochemical stability of spinel electrodes coated with ZrO2, Al2O3, and SiO2 from colloidal suspensions [J].
Kim, JS ;
Johnson, CS ;
Vaughey, JT ;
Hackney, SA ;
Walz, KA ;
Zeltner, WA ;
Anderson, MA ;
Thackeray, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (10) :A1755-A1761
[8]   Inhibition of the detrimental effects of water impurities in lithium-ion batteries [J].
Li, Wentao ;
Lucht, Brett L. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (04) :A115-A117
[9]   The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery [J].
Liu, Dong-Qiang ;
Liu, Xing-Quan ;
He, Ze-Zhen .
MATERIALS CHEMISTRY AND PHYSICS, 2007, 105 (2-3) :362-366
[10]   Surface layer formation on thin-film LiMn2O4 electrodes at elevated temperatures [J].
Matsuo, Y ;
Kostecki, R ;
McLarnon, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A687-A692