Complexity reduction of the NLMS algorithm via selective coefficient update

被引:103
作者
Aboulnasr, T [1 ]
Mayyas, K
机构
[1] Univ Ottawa, Sch Informat Technol & Engn, Ottawa, ON K1N 6N5, Canada
[2] Jordan Univ Sci & Technol, Dept Elect Engn, Irbid, Jordan
关键词
Adaptive algorithms - Echo suppression - Errors - FIR filters - Maximum likelihood estimation - Parameter estimation - Performance - Signal to noise ratio - White noise;
D O I
10.1109/78.757235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This correspondence proposes an algorithm for partial update of the coefficients of the normalized least mean square (NLMS) finite impulse response (FIR) adaptive filter. It is shown that while the proposed algorithm reduces the complexity of the adaptive filter, it maintains the closest performance to the full update NLMS filter for a given number of updates. Analysis of the MSE convergence and steady-state performance for independent and identically distributed (i.i.d.) signals is provided for the extreme case of one update/iteration.
引用
收藏
页码:1421 / 1424
页数:4
相关论文
共 9 条
  • [1] [Anonymous], ADAPTIVE FILTERING
  • [2] Douglas S., 1995, P 29 AS C SIGN SYST, V1, P659
  • [3] Adaptive filters employing partial updates
    Douglas, SC
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1997, 44 (03): : 209 - 216
  • [4] DOUGLAS SC, UNPUB ANAL MAX NLMS
  • [5] Kuo S. M., 1993, Digital Signal Processing, V3, P54, DOI 10.1006/dspr.1993.1007
  • [6] Leaky LMS algorithm: MSE analysis for Gaussian data
    Mayyas, K
    Aboulnasr, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (04) : 927 - 934
  • [7] MESSERSCHMITT D, 1986, DIGITAL SIGNAL PROCE
  • [8] FAST ALGORITHMS FOR RUNNING ORDERING AND MAX MIN CALCULATION
    PITAS, I
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1989, 36 (06): : 795 - 804
  • [9] SHAFFER S, 1984, P ICASSP, P260