Activation and inactivation of homomeric KvLQT1 potassium channels

被引:88
作者
Pusch, M
Magrassi, R
Wollnik, B
Conti, F
机构
[1] CNR, Ist Cibernet & Biofis, I-16149 Genoa, Italy
[2] Istanbul Univ, Dept Med Genet, Inst Child Hlth, TR-34290 Istanbul, Turkey
关键词
D O I
10.1016/S0006-3495(98)77568-X
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The voltage-gated potassium channel protein KvLQT1 (Wang et al., 1996, Nature Genet. 12:17-23) is believed to underlie the delayed rectifier potassium current of cardiac muscle together with the small membrane protein minK (also named IsK) as an essential auxiliary subunit (Barhanin et at., 1996. Nature. 384:78-80; Sanguinetti et al., 1996. Nature. 384,80-83). Using the Xenopus oocyte expression system, we analyzed in detail the gating characteristics of homomeric KvLQT1 channels and of heteromeric KvLQT1/minK channels using two-electrode voltage-clamp recordings. Activation of homomeric KvLQT1 at positive voltages is accompanied by an inactivation process that is revealed by a transient increase in conductance after membrane repolarization to negative values. We studied the recovery from inactivation and the deactivation of the channels during tail repolarizations at -120 mV after conditioning pulses of variable amplitude and duration. Most measurements were made in high extracellular potassium to increase the size of inward tail currents. However, experiments in normal low-potassium solutions st-cowed that, in contrast to classical C-type inactivation, the inactivation of KvLQT1 is independent of extracellular potassium. At +40 mV inactivation develops with a delay of 100 ms. At the same potential, the activation estimated from the amplitude of the late exponential decay of the tail currents follows a less sigmoidal time course, with a late time constant of 300 ms. Inactivation of KvLQT1 is not complete, even at the most positive voltages. The delayed, voltage-dependent onset and the incompleteness of inactivation suggest a sequential gating scheme containing at least two open states and ending with an inactivating step that is voltage independent. In coexpression experiments of KvLQT1 with minK, inactivation seems to be largely absent, although biphasic tails are also observed that could be related to similar phenomena.
引用
收藏
页码:785 / 792
页数:8
相关论文
共 39 条
[1]   TIME-DEPENDENT OUTWARD CURRENT IN GUINEA-PIG VENTRICULAR MYOCYTES - GATING KINETICS OF THE DELAYED RECTIFIER [J].
BALSER, JR ;
BENNETT, PB ;
RODEN, DM .
JOURNAL OF GENERAL PHYSIOLOGY, 1990, 96 (04) :835-863
[2]   K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current [J].
Barhanin, J ;
Lesage, F ;
Guillemare, E ;
Fink, M ;
Lazdunski, M ;
Romey, G .
NATURE, 1996, 384 (6604) :78-80
[3]   MODULATION OF K+ CURRENT BY FREQUENCY AND EXTERNAL [K+] - A TALE OF 2 INACTIVATION MECHANISMS [J].
BAUKROWITZ, T ;
YELLEN, G .
NEURON, 1995, 15 (04) :951-960
[4]  
CACECI MS, 1984, BYTE, V9, P340
[5]   IONIC CURRENT MECHANISMS GENERATING VERTEBRATE PRIMARY CARDIAC-PACEMAKER ACTIVITY AT THE SINGLE CELL LEVEL - AN INTEGRATIVE VIEW [J].
CAMPBELL, DL ;
RASMUSSON, RL ;
STRAUSS, HC .
ANNUAL REVIEW OF PHYSIOLOGY, 1992, 54 :279-302
[6]  
CHOUABE C, 1997, EMBO J, V16, P5471
[7]   A MOLECULAR-BASIS FOR CARDIAC-ARRHYTHMIA - HERG MUTATIONS CAUSE LONG QT SYNDROME [J].
CURRAN, ME ;
SPLAWSKI, I ;
TIMOTHY, KW ;
VINCENT, GM ;
GREEN, ED ;
KEATING, MT .
CELL, 1995, 80 (05) :795-803
[9]   SITE-SPECIFIC MUTATIONS IN A MINIMAL VOLTAGE-DEPENDENT K+ CHANNEL ALTER ION SELECTIVITY AND OPEN-CHANNEL BLOCK [J].
GOLDSTEIN, SAN ;
MILLER, C .
NEURON, 1991, 7 (03) :403-408
[10]   BIOPHYSICAL AND MOLECULAR MECHANISMS OF SHAKER POTASSIUM CHANNEL INACTIVATION [J].
HOSHI, T ;
ZAGOTTA, WN ;
ALDRICH, RW .
SCIENCE, 1990, 250 (4980) :533-538