Partial and complete observables for Hamiltonian constrained systems

被引:166
作者
Dittrich, B.
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Albert Einstein Inst, MPI F Gravitat Phys, D-14476 Golm Near Potsdam, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/s10714-007-0495-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We will pick up the concepts of partial and complete observables introduced by Rovelli in Conceptional Problems in Quantum Gravity, Birkhauser, Boston (1991); Class Quant Grav, 8:1895 (1991); Phys Rev, D65:124013 (2002); Quantum Gravity, Cambridge University Press, Cambridge (2007) in order to construct Dirac observables in gauge systems. We will generalize these ideas to an arbitrary number of gauge degrees of freedom. Different methods to calculate such Dirac observables are developed. For background independent field theories we will show that partial and complete observables can be related to Kuchar's Bubble-Time Formalism (J Math Phys, 13:768, 1972). Moreover one can define a non-trivial gauge action on the space of complete observables and also state the Poisson brackets of these functions. Additionally we will investigate, whether it is possible to calculate Dirac observables starting with partially invariant partial observables, for instance functions, which are invariant under the spatial diffeomorphism group.
引用
收藏
页码:1891 / 1927
页数:37
相关论文
共 38 条
[1]  
Arnold V. I., 1988, DYNAMICAL SYSTEMS
[2]   QUANTUM THEORY OF GRAVITY .I. CANONICAL THEORY [J].
DEWITT, BS .
PHYSICAL REVIEW, 1967, 160 (05) :1113-&
[3]  
DEWITT BS, 1962, INTRO CURRENT RES, P266
[4]   Partial and complete observables for canonical general relativity [J].
Dittrich, B. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (22) :6155-6184
[5]   Testing the master constraint programme for loop quantum gravity: II. Finite-dimensional systems [J].
Dittrich, B ;
Thiemann, T .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (04) :1067-1088
[6]  
DITTRICH B, GRQC0610060
[7]  
DITTRICH B, GRQC0507106
[8]  
DITTRICH B, GRQC0411139
[9]   A perturbative approach to Dirac observables and their spacetime algebra [J].
Dittrich, Bianca ;
Tambornino, Johannes .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (04) :757-783
[10]   DEGENERACY IN LOOP VARIABLES [J].
GOLDBERG, JN ;
LEWANDOWSKI, J ;
STORNAIOLO, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (02) :377-402