Extended differential geometric method to control a noisy chaotic system

被引:7
作者
Liaw, YM
Tung, PC
机构
[1] Department of Mechanical Engineering, National Central University
关键词
D O I
10.1016/0375-9601(96)00600-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Due to environmental noise or state accessibility, chaos by the differential geometric method can hardly be controlled exactly. However, these problems can be solved by a skillful arrangement using a linear estimator, and the overall system has the ability to reject the noise with power efficiency.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 25 条
[1]   EXPONENTIAL DATA WEIGHTING IN KALMAN-BUCY FILTER [J].
ANDERSON, BD .
INFORMATION SCIENCES, 1973, 5 :217-230
[2]   CONTROLLING CHAOS IN HIGH DIMENSIONAL SYSTEMS [J].
AUERBACH, D ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1992, 69 (24) :3479-3482
[3]   TAMING CHAOTIC DYNAMICS WITH WEAK PERIODIC PERTURBATIONS [J].
BRAIMAN, Y ;
GOLDHIRSCH, I .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2545-2548
[4]   ADAPTIVE-CONTROL OF CHAOTIC SYSTEMS IN A NOISY ENVIRONMENT [J].
CAZELLES, B ;
BOUDJEMA, G ;
CHAU, NP .
PHYSICS LETTERS A, 1995, 196 (5-6) :326-330
[6]   CONTROLLING CHAOS USING DIFFERENTIAL GEOMETRIC-METHOD [J].
FUH, CC ;
TUNG, PC .
PHYSICAL REVIEW LETTERS, 1995, 75 (16) :2952-2955
[7]  
Gelb A., 1974, Applied Optimal Estimation
[8]   TRACKING UNSTABLE STEADY-STATES - EXTENDING THE STABILITY REGIME OF A MULTIMODE LASER SYSTEM [J].
GILLS, Z ;
IWATA, C ;
ROY, R ;
SCHWARTZ, IB ;
TRIANDAF, I .
PHYSICAL REVIEW LETTERS, 1992, 69 (22) :3169-3172
[9]   LOCAL-CONTROL OF CHAOTIC MOTION [J].
HUBINGER, B ;
DOERNER, R ;
MARTIENSSEN, W .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (01) :103-106
[10]  
HUBLER AW, 1987, THESIS TU MUNICH