Oxygen activation and electron transfer in flavocytochrome P450BM3

被引:94
作者
Ost, TWB
Clark, J
Mowat, CG
Miles, CS
Walkinshaw, MD
Reid, GA
Chapman, SK
Daff, S
机构
[1] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Univ Edinburgh, Inst Cell & Mol Biol, Edinburgh EH9 3JT, Midlothian, Scotland
关键词
D O I
10.1021/ja035731o
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In flavocytochrome P450 BM3, there is a conserved phenylalanine residue at position 393 (Phe393), close to Cys400, the thiolate ligand to the heme. Substitution of Phe393 by Ala, His, Tyr, and Trp has allowed us to modulate the reduction potential of the heme, while retaining the structural integrity of the enzyme's active site. Substrate binding triggers electron transfer in P450 BM3 by inducing a shift from a low- to high-spin ferric heme and a 140 mV increase in the heme reduction potential. Kinetic analysis of the mutants indicated that the spin-state shift alone accelerates the rate of heme reduction (the rate determining step for overall catalysis) by 200-fold and that the concomitant shift in reduction potential is only responsible for a modest 2-fold rate enhancement. The second step in the P450 catalytic cycle involves binding of dioxygen to the ferrous heme. The stabilities of the oxy-ferrous complexes in the mutant enzymes were also analyzed using stopped-flow kinetics. These were found to be surprisingly stable, decaying to superoxide and ferric heme at rates of 0.01-0.5 s(-1). The stability of the oxy-ferrous complexes was greater for mutants with higher reduction potentials, which had lower catalytic turnover rates but faster heme reduction rates. The catalytic rate-determining step of these enzymes can no longer be the initial heme reduction event but is likely to be either reduction of the stabilized oxy-ferrous complex, i.e., the second flavin to heme electron transfer or a subsequent protonation event. Modulating the reduction potential of P450 BM3 appears to tune the two steps in opposite directions; the potential of the wild-type enzyme appears to be optimized to maximize the overall rate of turnover. The dependence of the visible absorption spectrum of the oxy-ferrous complex on the heme reduction potential is also discussed.
引用
收藏
页码:15010 / 15020
页数:11
相关论文
共 50 条
[1]   Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition [J].
Adak, S ;
Crooks, C ;
Wang, Q ;
Crane, BR ;
Tainer, JA ;
Getzoff, ED ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (38) :26907-26911
[2]   Roles of the proximal heme thiolate ligand in cytochrome P450cam [J].
Auclair, K ;
Moënne-Loccoz, P ;
de Montellano, PRO .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (21) :4877-4885
[3]   Reduced oxy intermediate observed in D251N cytochrome P450(cam) [J].
Benson, DE ;
Suslick, KS ;
Sligar, SG .
BIOCHEMISTRY, 1997, 36 (17) :5104-5107
[4]  
Chapman SK, 1997, STRUCT BOND, V88, P39
[5]   Redox control of the catalytic cycle of flavocytochrome P-450 BM3 [J].
Daff, SN ;
Chapman, SK ;
Turner, KL ;
Holt, RA ;
Govindaraj, S ;
Poulos, TL ;
Munro, AW .
BIOCHEMISTRY, 1997, 36 (45) :13816-13823
[6]   Hydroxylation of camphor by-reduced oxy-cytochrome P450cam: Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes [J].
Davydov, R ;
Makris, TM ;
Kofman, V ;
Werst, DE ;
Sligar, SG ;
Hoffman, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (07) :1403-1415
[7]   PROBING STRUCTURE-FUNCTION RELATIONS IN HEME-CONTAINING OXYGENASES AND PEROXIDASES [J].
DAWSON, JH .
SCIENCE, 1988, 240 (4851) :433-439
[8]   OXIDIZED CYTOCHROME-P-450 - MAGNETIC CIRCULAR-DICHROISM EVIDENCE FOR THIOLATE LIGATION IN SUBSTRATE-BOUND FORM - IMPLICATIONS FOR CATALYTIC MECHANISM [J].
DAWSON, JH ;
HOLM, RH ;
TRUDELL, JR ;
BARTH, G ;
LINDER, RE ;
BUNNENBERG, E ;
DJERASSI, C ;
TANG, SC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1976, 98 (12) :3707-3709
[9]  
DEMONTELLANO PRO, 1995, CYTOCHROME P420 STRU
[10]   An extensively modified version of MolScript that includes greatly enhanced coloring capabilities [J].
Esnouf, RM .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1997, 15 (02) :132-+