The pqrAB operon is responsible for paraquat resistance in Streptomyces coelicolor

被引:25
作者
Cho, YH
Kim, EJ
Chung, HJ
Choi, JH
Chater, KF
Ahn, BE
Shin, JH
Roe, JH [1 ]
机构
[1] Seoul Natl Univ, Sch Biol Sci, Seoul 151742, South Korea
[2] Seoul Natl Univ, Inst Microbiol, Seoul 151742, South Korea
[3] Sogang Univ, Dept Life Sci, Seoul 121742, South Korea
[4] John Innes Ctr, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1128/JB.185.23.6756-6763.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Paraquat (methyl viologen)-resistant mutants of Streptomyces coelicolor A3(2) that grew and sporulated normally in the presence of paraquat were isolated. Based on the positions of the mutant loci in the genetic map, we isolated the pqr (paraquat resistance) gene whose mutation (pqr501) caused a dominant paraquat-resistant phenotype. The pqr locus consists of two genes (pqrA and pqrB) that form a transcription unit. The pqrA gene encodes a protein with a TetR-like DNA-binding motif, and the pqrB gene encodes a putative efflux pump of the major facilitator superfamily. The pqr501 mutation was a base substitution changing arginine-18 to glutamine (R18Q) near the helix-turn-helix motif in PqrA. A pqrA null mutant exhibited similar paraquat resistance, and an increase in the amount of pqrA promoter-driven transcripts of about eightfold was observed for the pqrA501 mutant. These results suggest that PqrA is a negative regulator of its own operon. Deletion of the pqrAB operon caused cells to be very sensitive to paraquat, consistent with the prediction that PqrB may function as a paraquat-efflux pump. Purified PqrA protein specifically bound to the pqrA promoter region, whereas mutant R18Q protein did not, indicating that PqrA is a direct autoregulator of its own operon.
引用
收藏
页码:6756 / 6763
页数:8
相关论文
共 41 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[3]   PLASMID CLONING VECTORS FOR THE CONJUGAL TRANSFER OF DNA FROM ESCHERICHIA-COLI TO STREPTOMYCES SPP [J].
BIERMAN, M ;
LOGAN, R ;
OBRIEN, K ;
SENO, ET ;
RAO, RN ;
SCHONER, BE .
GENE, 1992, 116 (01) :43-49
[4]  
CANDENAS E, 1989, ANNU REV BIOCHEM, V58, P79
[5]   Taking a genetic scalpel to the Streptomyces colony [J].
Chater, KF .
MICROBIOLOGY-UK, 1998, 144 :1465-1478
[6]   Isolation and expression of the catA gene encoding the major vegetative catalase in Streptomyces coelicolor Muller [J].
Cho, YH ;
Roe, JH .
JOURNAL OF BACTERIOLOGY, 1997, 179 (12) :4049-4052
[7]   A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor [J].
Cho, YH ;
Lee, EJ ;
Roe, JH .
MOLECULAR MICROBIOLOGY, 2000, 35 (01) :150-160
[8]   SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor [J].
Cho, YH ;
Lee, EJ ;
Ahn, BE ;
Roe, JH .
MOLECULAR MICROBIOLOGY, 2001, 42 (01) :205-214
[9]  
Cho YH, 2000, J MICROBIOL, V38, P239
[10]   Negative regulation of the gene for Fe-containing superoxide dismutase by an Ni-responsive factor in Streptomyces coelicolor [J].
Chung, HJ ;
Choi, JH ;
Kim, EJ ;
Cho, YH ;
Roe, JH .
JOURNAL OF BACTERIOLOGY, 1999, 181 (23) :7381-7384