H4 acetylation, XIST RNA and replication timing are coincident and define X;: autosome boundaries in two abnormal X chromosomes

被引:41
作者
Keohane, AM
Barlow, AL
Waters, J
Bourn, D
Turner, BM [1 ]
机构
[1] Univ Birmingham, Chromatin & Gene Express Grp, Sch Med, Birmingham B15 2TT, W Midlands, England
[2] Birmingham Womens Hosp, Reg Genet Serv, Birmingham B15 2TG, W Midlands, England
基金
英国惠康基金;
关键词
D O I
10.1093/hmg/8.2.377
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inactive X (Xi) differs from its active homologue (Xa) in a number of ways, including increased methylation of CPG islands, replication late in S phase, underacetylation of histone H4 and association with XIST RNA. Global changes in DNA methylation occur relatively late in development, but the other properties all change during or shortly after the establishment of Xi and may play a role in the mechanism by which an inactive chromatin conformation spreads across most of the chromosome. In the present report, we use two human X;autosome translocation chromosomes to study the spreading of inactive X chromatin across X;autosome boundaries. In one of these chromosomes, t(X;6), Xp distal to p11.2 is replaced by 6p21.1-6pter and, in the other, ins(X;16), a small fragment derived from 16p13 is inserted into the distal third of Xq, In lymphoid cells from patients carrying these translocations in an unbalanced form, Xi was shown by HUMARA assay to be derived exclusively [t(X:6)] or predominantly [ins (X;16)] from the derived X chromosome. We used a combination of immunolabelling and RNA/DNA fluorescence in situ hybridization to define the distribution of XIST RNA, deacetylated H4 and late-replicating DNA across the two derived X chromosomes in inactive form. Within the limits of the cytogenetic techniques employed, the results show complete coincidence of these three parameters, with all three being excluded from the autosomal component of the derived X chromosome.
引用
收藏
页码:377 / 383
页数:7
相关论文
共 45 条
[1]  
ALLEN RC, 1992, AM J HUM GENET, V51, P1229
[2]   A MORPHOLOGICAL DISTINCTION BETWEEN NEURONES OF THE MALE AND FEMALE, AND THE BEHAVIOUR OF THE NUCLEOLAR SATELLITE DURING ACCELERATED NUCLEOPROTEIN SYNTHESIS [J].
BARR, ML ;
BERTRAM, EG .
NATURE, 1949, 163 (4148) :676-677
[3]  
Belyaev ND, 1996, HUM GENET, V97, P573
[4]   Histone H4 acetylation and replication timing in Chinese hamster chromosomes [J].
Belyaev, ND ;
Keohane, AM ;
Turner, BM .
EXPERIMENTAL CELL RESEARCH, 1996, 225 (02) :277-285
[5]   CHARACTERIZATION OF A MURINE GENE EXPRESSED FROM THE INACTIVE X-CHROMOSOME [J].
BORSANI, G ;
TONLORENZI, R ;
SIMMLER, MC ;
DANDOLO, L ;
ARNAUD, D ;
CAPRA, V ;
GROMPE, M ;
PIZZUTI, A ;
MUZNY, D ;
LAWRENCE, C ;
WILLARD, HF ;
AVNER, P ;
BALLABIO, A .
NATURE, 1991, 351 (6324) :325-329
[6]   CONSERVATION OF POSITION AND EXCLUSIVE EXPRESSION OF MOUSE XIST FROM THE INACTIVE X-CHROMOSOME [J].
BROCKDORFF, N ;
ASHWORTH, A ;
KAY, GF ;
COOPER, P ;
SMITH, S ;
MCCABE, VM ;
NORRIS, DP ;
PENNY, GD ;
PATEL, D ;
RASTAN, S .
NATURE, 1991, 351 (6324) :329-331
[7]   THE PRODUCT OF THE MOUSE XIST GENE IS A 15 KB INACTIVE X-SPECIFIC TRANSCRIPT CONTAINING NO CONSERVED ORF AND LOCATED IN THE NUCLEUS [J].
BROCKDORFF, N ;
ASHWORTH, A ;
KAY, GF ;
MCCABE, VM ;
NORRIS, DP ;
COOPER, PJ ;
SWIFT, S ;
RASTAN, S .
CELL, 1992, 71 (03) :515-526
[8]   LOCALIZATION OF THE X-INACTIVATION CENTER ON THE HUMAN X-CHROMOSOME IN XQ13 [J].
BROWN, CJ ;
LAFRENIERE, RG ;
POWERS, VE ;
SEBASTIO, G ;
BALLABIO, A ;
PETTIGREW, AL ;
LEDBETTER, DH ;
LEVY, E ;
CRAIG, IW ;
WILLARD, HF .
NATURE, 1991, 349 (6304) :82-84
[9]   THE HUMAN XIST GENE - ANALYSIS OF A 17 KB INACTIVE X-SPECIFIC RNA THAT CONTAINS CONSERVED REPEATS AND IS HIGHLY LOCALIZED WITHIN THE NUCLEUS [J].
BROWN, CJ ;
HENDRICH, BD ;
RUPERT, JL ;
LAFRENIERE, RG ;
XING, Y ;
LAWRENCE, J ;
WILLARD, HF .
CELL, 1992, 71 (03) :527-542
[10]   XIST RNA paints the inactive X chromosome at interphase: Evidence for a novel RNA involved in nuclear chromosome structure [J].
Clemson, CM ;
McNeil, JA ;
Willard, HF ;
Lawrence, JB .
JOURNAL OF CELL BIOLOGY, 1996, 132 (03) :259-275