Brg1, the ATPase subunit of the SWI/SNF chromatin remodeling complex, is required for myeloid differentiation to granulocytes

被引:40
作者
Vradii, D
Wagner, S
Doan, DN
Nickerson, JA
Montecino, M
Lian, JB
Stein, JL
Van Wijnen, AJ
Imbalzano, AN
Stein, GS
机构
[1] Univ Massachusetts, Sch Med, Dept Cell Biol, Worcester, MA 01655 USA
[2] Univ Massachusetts, Sch Med, Ctr Canc, Worcester, MA 01655 USA
[3] Univ Concepcion, Dept Mol Biol, Concepcion, Chile
关键词
D O I
10.1002/jcp.20432
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Many mammalian SWI/SNF complexes use Brahma-related gene I (Brg1) as a catalytic subunit to remodel nucleosomes for transcription regulation. In several mesenchymal cells and tissues, expression of a defective Brg1 protein, negates the normal activity of the SWI/SNF complex and delays or blocks differentiation. To investigate the role of SWI/SNF complexes during myelopoiesis, we stably expressed a dominant negative (dn) Brg1 mutant in the myeloid lineage. Forced expression of dnBrg1 in IL-3-dependent murine 32Dcl3 myeloid progenitor cells results in a profound delay in the granulocyte-colony stimulating factor (G-CSF) induced granulocytic maturation. These cells also exhibit a significant decrease in the expression of both CD11b and Gr-1 surface receptors, which are normally upregulated during granulopoiesis, and show sustained expression of myeloperoxidase, which is synthesized primarily during the promyelocytic (blast) stage of myeloid development. Thus, dnBrg1 expression causes a developmental block at the promyelocytic/metamyelocytic stage of myeloid differentiation. Our findings indicate that the normal chromatin remodeling function of Brg1 is necessary for the G-CSF dependent differentiation of myeloid cells towards the granulocytic lineage. This dependency on Brg1 may reflect a stringent requirement for chromatin remodeling at a critical stage of hematopoietic cell maturation.
引用
收藏
页码:112 / 118
页数:7
相关论文
共 53 条
[1]   A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro [J].
Armstrong, JA ;
Bieker, JJ ;
Emerson, BM .
CELL, 1998, 95 (01) :93-104
[2]   The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation [J].
Barker, N ;
Hurlstone, A ;
Musisi, H ;
Miles, A ;
Bienz, M ;
Clevers, H .
EMBO JOURNAL, 2001, 20 (17) :4935-4943
[3]   Multiple subnuclear targeting signals of the leukemia-related AML1/ETO and ETO repressor proteins [J].
Barseguian, K ;
Lutterbach, B ;
Hiebert, SW ;
Nickerson, J ;
Lian, JB ;
Stein, JL ;
van Wijnen, AJ ;
Stein, GS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) :15434-15439
[4]   Long-distance chromatin mechanisms controlling tissue-specific gene locus activation [J].
Bonifer, C .
GENE, 1999, 238 (02) :277-289
[5]   The translocation t(8;l6)(p11, p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB binding protein [J].
Borrow, J ;
Stanton, VP ;
Andresen, JM ;
Becher, R ;
Behm, FG ;
Chaganti, RSK ;
Civin, CI ;
Disteche, C ;
Dube, I ;
Frischauf, AM ;
Horsman, D ;
Mitelman, F ;
Volinia, S ;
Watmore, AE ;
Housman, DE .
NATURE GENETICS, 1996, 14 (01) :33-41
[6]   The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9 [J].
Borrow, J ;
Shearman, AM ;
Stanton, VP ;
Becher, R ;
Collins, T ;
Williams, AJ ;
Dube, I ;
Katz, F ;
Kwong, YL ;
Morris, C ;
Ohyashiki, K ;
Toyama, K ;
Rowley, J ;
Housman, DE .
NATURE GENETICS, 1996, 12 (02) :159-167
[7]   Looping versus linking: toward a model for long-distance gene activation [J].
Bulger, M ;
Groudine, M .
GENES & DEVELOPMENT, 1999, 13 (19) :2465-2477
[8]   A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes [J].
Bultman, S ;
Gebuhr, T ;
Yee, D ;
La Mantia, C ;
Nicholson, J ;
Gilliam, A ;
Randazzo, F ;
Metzger, D ;
Chambon, P ;
Crabtree, G ;
Magnuson, T .
MOLECULAR CELL, 2000, 6 (06) :1287-1295
[9]   Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes [J].
Chi, TH ;
Wan, M ;
Zhao, KJ ;
Taniuchi, I ;
Chen, L ;
Littman, DR ;
Crabtree, GR .
NATURE, 2002, 418 (6894) :195-199
[10]  
Cimino G, 1998, HAEMATOLOGICA, V83, P350