Energetics and kinetics of ethylbenzene adsorption on epitaxial FeO(111) and Fe3O4(111) films studied by thermal desorption and photoelectron spectroscopy

被引:24
作者
Zscherpel, D [1 ]
Ranke, W [1 ]
Weiss, W [1 ]
Schlögl, R [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
关键词
D O I
10.1063/1.476421
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption of ethylbenzene (EB) has been studied on thin films of FeO(III) and Fe3O4(III) grown epitaxially on Pt(lll) using thermal desorption spectroscopy (TDS), ultraviolet photoelectron spectroscopy (UPS) and low energy electron diffraction (LEED). Applying a threshold analysis of the TDS data, desorption energies E-des and the corresponding frequency factors are deduced. The UPS measurements are performed under adsorption-desorption equilibrium conditions: The spectra are taken at varying sample temperature at constant EB gas phase pressures. From the spectra, the EB-coverages theta(EB) are deduced. From the adsorption isobars obtained in this way, isosteric heats of adsorption q(st)(theta(EB)) are obtained which are compared to the desorption energies E-des deduced from TDS. On the oxygen-terminated FeO(III) surface, two adsorption states are observed, a physisorbed first layer (beta-EB) followed by condensation (alpha-EB). Their UP spectra are almost identical and very similar to the spectrum of gas phase EB. On Fe3O4(III), a more strongly chemisorbed species (gamma(1)-EB) is adsorbed first, followed by physisorbed beta- and condensed alpha-EB. The chemisorbed phase exhibits a strong shift and split of the highest occupied pi orbitals of the phenyl group. This indicates a strong interaction between the substrate and the adsorbed molecules that are adsorbed with the phenyl ring lying flat on the surface. The desorption energies E-des and the isosteric heats of adsorption q(st), respectively, are 91 (85) kJ/mol for gamma(1)-, 55 (58) KJ/mol for beta- and 50 (52) kJ/mol for alpha-EB and agree generally well. The differences are discussed in terms of different coverage ranges accessible for both methods, the nonequilibrium character of the TDS method and to the threshold analysis which yields only data for the most loosely bound molecules desorbing first in each desorption track. (C) 1998 American Institute of Physics.
引用
收藏
页码:9506 / 9515
页数:10
相关论文
共 31 条
[1]   AN INFRARED STUDY OF THE DEHYDROGENATION OF ETHYLBENZENE TO STYRENE OVER IRON-BASED CATALYSTS [J].
ADDIEGO, WP ;
ESTRADA, CA ;
GOODMAN, DW ;
ROSYNEK, MP .
JOURNAL OF CATALYSIS, 1994, 146 (02) :407-414
[2]   KINETICS OF THE DEHYDROGENATION OF ETHYLBENZENE TO STYRENE OVER UNPROMOTED AND K-PROMOTED MODEL IRON-OXIDE CATALYSTS [J].
COULTER, K ;
GOODMAN, DW ;
MOORE, RG .
CATALYSIS LETTERS, 1995, 31 (01) :1-8
[3]   PHOTOEMISSION OBSERVATIONS OF PI-D BONDING AND SURFACE-REACTIONS OF ADSORBED HYDROCARBONS ON NI(111) [J].
DEMUTH, JE ;
EASTMAN, DE .
PHYSICAL REVIEW LETTERS, 1974, 32 (20) :1123-1127
[4]   Photoelectron diffraction: New dimensions in space, time, and spin [J].
Fadley, CS ;
VanHove, MA ;
Hussain, Z ;
Kaduwela, AP .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1995, 75 :273-297
[5]   Structure and contrast in scanning tunneling microscopy of oxides: FeO monolayer on Pt(111) [J].
Galloway, HC ;
Sautet, P ;
Salmeron, M .
PHYSICAL REVIEW B, 1996, 54 (16) :11145-11148
[6]   Electronic structure of adsorbed organic molecules [J].
Getzlaff, M ;
Schonhense, G .
SURFACE SCIENCE, 1997, 377 (1-3) :187-191
[7]  
GETZLAFF M, UNPUB
[8]  
Gordon A.J., 1972, CHEM COMPANION
[9]   EVALUATION OF FLASH DESORPTION SPECTRA [J].
HABENSCHADEN, E ;
KUPPERS, J .
SURFACE SCIENCE, 1984, 138 (01) :L147-L150
[10]   DEHYDROGENATION OF ETHYLBENZENE OVER POTASSIUM-PROMOTED IRON-OXIDE CONTAINING CERIUM AND MOLYBDENUM OXIDES [J].
HIRANO, T .
APPLIED CATALYSIS, 1986, 28 (1-2) :119-132