A credit assignment approach to fusing classifiers of multiseason hyperspectral imagery

被引:22
作者
Bachmann, CM [1 ]
Bettenhausen, MH
Fusina, RA
Donato, TF
Russ, AL
Burke, JW
Lamela, GM
Rhea, WJ
Truitt, BR
Porter, JH
机构
[1] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA
[2] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[3] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[4] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[5] Virginia Coast Reserve, Nat Conservancy, Nassawadox, VA 23413 USA
[6] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2003年 / 41卷 / 11期
关键词
Barrier Islands; decision-based classifier fusion; hyperspectral remote sensing; land-cover classification; maximum estimated reliability measure (MAXERM); multiple classifier systems; multiple classification system; multiseason classification; smooth estimated reliability measure (SERM); Virginia Coast Reserve;
D O I
10.1109/TGRS.2003.818537
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A credit assignment approach to decision-based classifier fusion is developed and applied to the problem of land-cover classification from multiseason airborne hyperspectral imagery. For each input sample,, the new method uses a smoothed estimated reliability measure (SERM) in the output domain of the classifiers. SERM requires no additional training beyond that needed to optimize the constituent classifiers in the pool, and its generalization (test) accuracy exceeds that of a number of other extant methods for classifier fusion. Hyperspectral imagery from HyMAP and PROBE2 acquired at three points in the growing season over Smith Island, VA, a barrier island in the Nature Conservancy's Virginia Coast Reserve, serves as the basis for comparing SERM with other approaches.
引用
收藏
页码:2488 / 2499
页数:12
相关论文
共 43 条
[1]  
[Anonymous], 1986, STAT SCI
[2]  
[Anonymous], 1999, Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems
[3]  
[Anonymous], 1961, Adaptive Control Processes: a Guided Tour, DOI DOI 10.1515/9781400874668
[4]   Automatic classification of land cover on Smith Island, VA, using HyMAP imagery [J].
Bachmann, CM ;
Donato, TF ;
Lamela, GM ;
Rhea, WJ ;
Bettenhausen, MH ;
Fusina, RA ;
Du Bois, KR ;
Porter, JH ;
Truitt, BR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2313-2330
[5]   Improving the performance of classifiers in high-dimensional remote sensing applications: An adaptive resampling strategy for error-prone exemplars (ARESEPE) [J].
Bachmann, CM .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :2101-2112
[6]  
BAILEY GD, 1991, PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL CONFERENCE ON DEVELOPING AND MANAGING EXPERT SYSTEM PROGRAMS, P196, DOI 10.1109/DMESP.1991.171737
[7]   CONSENSUS THEORETIC CLASSIFICATION METHODS [J].
BENEDIKTSSON, JA ;
SWAIN, PH .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1992, 22 (04) :688-704
[8]   Classification of multisource and hyperspectral data based on decision fusion [J].
Benediktsson, JA ;
Kanellopoulos, I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03) :1367-1377
[9]  
Boardman J.W., 1998, SUMM 7 JPL AIRB GEOS, P55
[10]   Multiple classifiers applied to multisource remote sensing data [J].
Briem, GJ ;
Benediktsson, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2291-2299