Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping

被引:217
作者
Ni, Shuang [1 ]
Li, Zhenyu [1 ]
Yang, Jinlong [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
关键词
HIGH ELECTROCATALYTIC ACTIVITY; METAL-FREE ELECTROCATALYSTS; TOTAL-ENERGY CALCULATIONS; REDUCTION REACTION; CATHODE CATALYSTS; NANOTUBES; GRAPHENE; POINTS; ARRAYS;
D O I
10.1039/c1nr11086a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The energy barrier of oxygen molecule dissociation on carbon nanotubes or graphene with different types of nitrogen doping is investigated using density functional theory. The results show that the energy barriers can be reduced efficiently by all types of nitrogen doping in both carbon nanotubes and graphene. Graphite-like nitrogen and Stone-Wales defect nitrogen decrease the energy barrier more efficiently than pyridine-like nitrogen, and a dissociation barrier lower than 0.2 eV can be obtained. Higher nitrogen concentration reduces the energy barrier much more efficiently for graphite-like nitrogen. These observations are closely related to partial occupation of pi* orbitals and change of work functions. Our results thus provide useful insights into the oxygen reduction reactions.
引用
收藏
页码:1184 / 1189
页数:6
相关论文
共 41 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Oxidation of carbon nanotubes by singlet O2 -: art. no. 086403 [J].
Chan, SP ;
Chen, G ;
Gong, XG ;
Liu, ZF .
PHYSICAL REVIEW LETTERS, 2003, 90 (08) :4
[3]   Identification of electron donor states in N-doped carbon nanotubes [J].
Czerw, R ;
Terrones, M ;
Charlier, JC ;
Blase, X ;
Foley, B ;
Kamalakaran, R ;
Grobert, N ;
Terrones, H ;
Tekleab, D ;
Ajayan, PM ;
Blau, W ;
Rühle, M ;
Carroll, DL .
NANO LETTERS, 2001, 1 (09) :457-460
[4]   Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells [J].
Feng, Leiyu ;
Yan, Yuanyuan ;
Chen, Yinguang ;
Wang, Lijun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1892-1899
[5]   Nitrogen doping effects on the structure of graphene [J].
Geng, Dongsheng ;
Yang, Songlan ;
Zhang, Yong ;
Yang, Jinli ;
Liu, Jian ;
Li, Ruying ;
Sham, Tsun-Kong ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
APPLIED SURFACE SCIENCE, 2011, 257 (21) :9193-9198
[6]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[7]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[8]   Carbon alloy catalysts: Active sites for oxygen reduction reaction [J].
Ikeda, Takashi ;
Boero, Mauro ;
Huang, Sheng-Feng ;
Terakura, Kiyoyuki ;
Oshima, Masaharu ;
Ozaki, Jun-ichi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (38) :14706-14709
[9]   High oxygen-reduction activity of silk-derived activated carbon [J].
Iwazaki, Tomoya ;
Obinata, Ryoujin ;
Sugimoto, Wataru ;
Takasu, Yoshio .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (02) :376-378
[10]   Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes [J].
Jang, JW ;
Lee, CE ;
Lyu, SC ;
Lee, TJ ;
Lee, CJ .
APPLIED PHYSICS LETTERS, 2004, 84 (15) :2877-2879