High-girth graphs avoiding a minor are nearly bipartite

被引:28
作者
Galluccio, A
Goddyn, LA
Hell, P
机构
[1] CNR, Ist Anal Sistemi & Informat, I-00185 Rome, Italy
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[4] Simon Fraser Univ, Dept Math & Stat, Burnaby, BC V5A 1S6, Canada
关键词
homomorphism; circular chromatic number; star chromatic number; girth; genus; forbidden minor; nearly bipartite graph;
D O I
10.1006/jctb.2000.2009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a fixed graph. We show that any H-minor free graph G of high enough girth has circular chromatic number arbitrarily close to two. Equivalently, each such graph G admits a homomorphism to a large odd circuit. In particular, graphs of high girth and of bounded genus, or of bounded tree width, are "nearly bipartite" in this sense. For example, any planar graph of girth at least 16 admits a homomorphism to a pentagon. We also obtain tight bounds on the girth of G in a few specific cases of small forbidden minors H. (C) 2001 Academic Press.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 29 条
  • [1] ALBERTSON MO, COMMUNICATION
  • [2] [Anonymous], 1988, Selected Topics in Graph Theory
  • [3] Proof of a conjecture of Mader, Erdos and Hajnal on topological complete subgraphs
    Bollobás, B
    Thomason, A
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (08) : 883 - 887
  • [4] BOLLOBAS B, 1995, HDB COMBINATORICS, V2
  • [5] Cook R. J., 1975, Periodica Mathematica Hungarica, V6, P103, DOI 10.1007/BF02018401
  • [6] COOK RJ, 1974, LONDON MATH SOC LECT, V13, P27
  • [7] DEVOS M, UNPUB CIRCULAR CHROM
  • [8] HOMOMORPHISMS OF GRAPHS INTO ODD CYCLES
    GERARDS, AMH
    [J]. JOURNAL OF GRAPH THEORY, 1988, 12 (01) : 73 - 83
  • [9] Goddyn LA, 1998, J GRAPH THEOR, V28, P155, DOI 10.1002/(SICI)1097-0118(199807)28:3<155::AID-JGT5>3.0.CO
  • [10] 2-J