Arsenic uptake by two hyperaccumulator ferns from four arsenic contaminated soils

被引:23
作者
Fayiga, AO [1 ]
Ma, LQ [1 ]
机构
[1] Univ Florida, Dept Soil & Water Sci, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
arsenic uptake; contaminated soils; P; vittata; cretica; hyperaccumulator; phytoremediation;
D O I
10.1007/s11270-005-0612-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A greenhouse study was conducted to evaluate and compare arsenic accumulation from four arsenic contaminated soils by two arsenic hyperaccumulators, Pteris vittata and Pteris cretica. After growing in soils for six weeks, the plants were harvested and separated into above- and below-ground biomass. Total As, P, Ca, K, glutathione and biomass were measured for the plants, and total As, Mehlich-3 P and As, exchangeable K and Ca, and arsenic fractionation were performed for the soils. Pteris vittata had significantly higher total biomass (14 g/plant) and As accumulation than P. cretica. Arsenic accumulation in both ferns followed the arsenic concentrations in the soil. The P/As molar ratio in the fronds, growing in arsenic contaminated soils, ranged from 80 to 939 in P. vittata and 130 to 421 in P. cretica. Plant arsenic concentrations were significantly positively correlated with Mehlich-3 arsenic in the soils. Soil pH was also significantly correlated with Mehlich-3 arsenic before and after plant uptake. Plant As uptake was significantly correlated with exchangeable potassium in the soil before plant uptake. Glutathione availability was not implicated as a major detoxification mechanism in these ferns. Though both plants were effective in taking up arsenic from various arsenic contaminated soils, P. vittata was overall a better candidate for phytoremediation of arsenic contaminated soils.
引用
收藏
页码:71 / 89
页数:19
相关论文
共 42 条
[1]   Modification of thiol contents in poplars (Populus tremula x P-alba) overexpressing enzymes involved in glutathione synthesis [J].
Arisi, ACM ;
Noctor, G ;
Foyer, CH ;
Jouanin, L .
PLANTA, 1997, 203 (03) :362-372
[2]   Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation [J].
Boisson, J ;
Ruttens, A ;
Mench, M ;
Vangronsveld, J .
ENVIRONMENTAL POLLUTION, 1999, 104 (02) :225-233
[3]   Assessment of arsenic mobility in the soils of some golf courses in South Florida [J].
Cai, Y ;
Cabrera, JC ;
Georgiadis, M ;
Jayachandran, K .
SCIENCE OF THE TOTAL ENVIRONMENT, 2002, 291 (1-3) :123-134
[4]  
Carvalho L. H. M., 1998, ECOTOXICOL ENV RESTO, V1, P13
[5]  
DAY PR, 1965, AGRON MONOGR, V9, P552
[6]   CHANGES IN THE KINETICS OF PHOSPHATE AND POTASSIUM ABSORPTION IN NUTRIENT-DEFICIENT BARLEY ROOTS MEASURED BY A SOLUTION-DEPLETION TECHNIQUE [J].
DREW, MC ;
SAKER, LR ;
BARBER, SA ;
JENKINS, W .
PLANTA, 1984, 160 (06) :490-499
[7]  
Fairhurst, 2000, HDB SERIES POTASH PH, P191
[8]  
GLEYZES C, 2002, METHODOLOGIES SOIL S
[9]   Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity [J].
Hartley-Whitaker, J ;
Ainsworth, G ;
Meharg, AA .
PLANT CELL AND ENVIRONMENT, 2001, 24 (07) :713-722
[10]   Influence of plant age on glutathione levels and glutathione transferases involved in herbicide detoxification in corn (Zea mays L) and giant foxtail (Setaria faberi Herrm) [J].
Hatton, PJ ;
Cole, DJ ;
Edwards, R .
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 1996, 54 (03) :199-209