Plant photoreceptors: Phylogenetic overview

被引:49
作者
Lariguet, P [1 ]
Dunand, C [1 ]
机构
[1] Univ Geneva, Dept Plant Biol, CH-1211 Geneva, Switzerland
关键词
cryptochromes; phototropins; phylogeny; phytochromes; UV-B photoreceptors; zeitlupes;
D O I
10.1007/s00239-004-0294-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants possess photoreceptors to perceive light which controls most aspects of their lives. Three photoreceptor families are well characterized: cryptochromes (crys), phototropins (phots), and phytochromes (phys). Two putative families have been identified more recently: Zeitlupes (ZTLs) and UV-B photoreceptors (ULI). Using Arabidopsis thaliana and Oryza sativa photoreceptor sequences as references, we have searched for photoreceptor encoding genes in the major phyla of plant kingdom. For each photoreceptor family, using a phylogenetic tree based on the alignment of conserved amino acid sequences, we have tried to trace back the evolution and the emergence of the diverse photoreceptor ancestral sequences. The green alga Chlamydomonas contains one cry and one phot sequence, probably close to the corresponding ancestral sequences, and no phy-related sequence. The putative UV-B photoreceptors seem to be restricted to the Brassicacae. Except for mosses and ferns, which contain divergent photoreceptor numbers, the composition of the diverse photoreceptor families is conserved between species. A high conservation of the residues within domains is observed in each photoreceptor family. The complete phylogenic analysis of the photoreceptor families in plants has confirmed the existence of crucial evolutionary nodes between the major phyla. For each photoreceptor class, a major duplication occurred before the separation between Mono- and Eudicotyledons. This allowed postulating on the putative ancestral function of the photoreceptors.
引用
收藏
页码:559 / U59
页数:14
相关论文
共 51 条
[1]   Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato [J].
Alba, R ;
Cordonnier-Pratt, MM ;
Pratt, LH .
PLANT PHYSIOLOGY, 2000, 123 (01) :363-370
[2]   The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms [J].
Alba, R ;
Kelmenson, PM ;
Cordonnier-Pratt, MM ;
Pratt, LH .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (03) :362-373
[3]   The phototropin family of photoreceptors [J].
Briggs, WR ;
Beck, CF ;
Cashmore, AR ;
Christie, JM ;
Hughes, J ;
Jarillo, JA ;
Kagawa, T ;
Kanegae, H ;
Liscum, E ;
Nagatani, A ;
Okada, K ;
Salomon, M ;
Rüdiger, W ;
Sakai, T ;
Takano, M ;
Wada, M ;
Watson, JC .
PLANT CELL, 2001, 13 (05) :993-997
[4]   Phototropins 1 and 2: versatile plant blue-light receptors [J].
Briggs, WR ;
Christie, JM .
TRENDS IN PLANT SCIENCE, 2002, 7 (05) :204-210
[5]   Identification of a new cryptochrome class: Structure, function, and evolution [J].
Brudler, R ;
Hitomi, K ;
Daiyasu, H ;
Toh, H ;
Kucho, K ;
Ishiura, M ;
Kanehisa, M ;
Roberts, VA ;
Todo, T ;
Tainer, JA ;
Getzoff, ED .
MOLECULAR CELL, 2003, 11 (01) :59-67
[6]   Cryptochromes: Blue light receptors for plants and animals [J].
Cashmore, AR ;
Jarillo, JA ;
Wu, YJ ;
Liu, DM .
SCIENCE, 1999, 284 (5415) :760-765
[7]   Phototropins and associated signaling: Providing the power of movement in higher plants [J].
Celaya, RB ;
Liscum, E .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2005, 81 (01) :73-80
[8]   Light signal transduction in higher plants [J].
Chen, M ;
Chory, J ;
Fankhauser, C .
ANNUAL REVIEW OF GENETICS, 2004, 38 :87-117
[9]   Identification of cryptochrome DASH from vertebrates [J].
Daiyasu, H ;
Ishikawa, T ;
Kuma, K ;
Iwai, S ;
Todo, T ;
Toh, H .
GENES TO CELLS, 2004, 9 (05) :479-495
[10]  
Felsenstein J., 1993, PHYLIP PHYLOGENY INF