Pf1, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex

被引:71
作者
Yochum, GS [1 ]
Ayer, DE [1 ]
机构
[1] Univ Utah, Huntsman Canc Inst, Dept Oncol Sci, Salt Lake City, UT 84112 USA
关键词
D O I
10.1128/MCB.21.13.4110-4118.2001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mSin3A-histone deacetylase corepressor is a multiprotein complex that is recruited by DNA binding transcriptional repressors. Sin3 has four paired amphipathic alpha helices (PAH1 to -4) that are protein-protein interaction motifs and is the scaffold upon which the complex assembles. We identified a novel mSin3A-interacting protein that has two plant homeodomain (PHD) zinc fingers we term PM, for PHB factor one. PM associates with mSin3A in vivo and recruits the mSin3A complex to repress transcription when fused to the DNA binding domain of Gal4. Pf1 interacts with Sin3 through two independent Sin3 interaction domains (SIDs), Pf1SID1 and Pf1SID2. Pf1SID1 binds PAH2, while Pf1SID2 binds PAH1. Pf1SID1 has sequence and structural similarity to the well-characterized 13-amino-acid SID of the Mad bHLHZip repressor. Pf1SID2 does not have sequence similarity with either Mad SID or Pf1SID1 and therefore represents a novel Sin3 binding domain. Mutations in a minimal fragment of Pf1 that encompasses Pf1SID1 inhibited mSin3A binding yet only slightly impaired repression when targeted to DNA, implying that PM might interact with other corepressors. We show that PM interacts with a mammalian homolog of the Drosophila Groucho corepressor, transducin-like enhancer (TLE). PM binds TLE in an mSin3A-independent manner and recruits functional TLE complexes to repress transcription. These findings suggest that PM may serve to bridge two global transcription networks, mSin3A and TLE.
引用
收藏
页码:4110 / 4118
页数:9
相关论文
共 67 条
[1]   THE PHD FINGER - IMPLICATIONS FOR CHROMATIN-MEDIATED TRANSCRIPTIONAL REGULATION [J].
AASLAND, R ;
GIBSON, TJ ;
STEWART, AF .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (02) :56-59
[2]   NuRD and SIN3 - histone deacetylase complexes in development [J].
Ahringer, J .
TRENDS IN GENETICS, 2000, 16 (08) :351-356
[3]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[4]  
Ayer DE, 1996, MOL CELL BIOL, V16, P5772
[5]   MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3 [J].
AYER, DE ;
LAWRENCE, QA ;
EISENMAN, RN .
CELL, 1995, 80 (05) :767-776
[6]   Histone deacetylases: transcriptional repression with SINers and NuRDs [J].
Ayer, DE .
TRENDS IN CELL BIOLOGY, 1999, 9 (05) :193-198
[7]   Hairy mediates dominant repression in the Drosophila embryo [J].
Barolo, S ;
Levine, M .
EMBO JOURNAL, 1997, 16 (10) :2883-2891
[8]   Mix, a novel max-like BHLHZip protein that interacts with the max network of transcription factors [J].
Billin, AN ;
Eilers, AL ;
Queva, C ;
Ayer, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36344-36350
[9]   RING domains: Master builders of molecular scaffolds? [J].
Borden, KLB .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 295 (05) :1103-1112
[10]   Solution structure of the interacting domains of the Mad-Sin3 complex: Implications for recruitment of a chromatin-modifying complex [J].
Brubaker, K ;
Cowley, SM ;
Huang, K ;
Loo, L ;
Yochum, GS ;
Ayer, DE ;
Eisenman, RN ;
Radhakrishnan, I .
CELL, 2000, 103 (04) :655-665