A semi-Bayesian method for nonparametric density estimation

被引:9
作者
de Bruin, R
Salomé, D
Schaafsma, W
机构
[1] Univ Groningen, Ctr High Performance Comp, NL-9700 AV Groningen, Netherlands
[2] Univ Groningen, Dept Math & Comp Sci, NL-9700 AV Groningen, Netherlands
关键词
D O I
10.1016/S0167-9473(98)00089-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
If x([1],) ..., x([n]) are the ordered outcomes of an independent random sample from a distribution on the interval [x([0]), x([n+1])] = [a, b] with distribution function F and density function f then 'intrinsic' arguments (Section 2) lead to a specific Bernstein polynomial as 'the' estimate of F-1(p). Numerical inversion and differentiation provides 'the' estimate of f = F' which we study in detail. A comparison is made, extensions are indicated and literature is discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 20 条
[1]   SOME MINIMAX INVARIANT PROCEDURES FOR ESTIMATING A CUMULATIVE DISTRIBUTION FUNCTION [J].
AGGARWAL, OP .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (03) :450-463
[2]   A NOTE ON THE ESTIMATION OF A DISTRIBUTION FUNCTION AND QUANTILES BY A KERNEL-METHOD [J].
AZZALINI, A .
BIOMETRIKA, 1981, 68 (01) :326-328
[3]   APPROXIMATION OF DENSITY-FUNCTIONS BY SEQUENCES OF EXPONENTIAL-FAMILIES [J].
BARRON, AR ;
SHEU, CH .
ANNALS OF STATISTICS, 1991, 19 (03) :1347-1369
[4]   CONSISTENT CROSS-VALIDATED DENSITY-ESTIMATION [J].
CHOW, YS ;
GEMAN, S ;
WU, LD .
ANNALS OF STATISTICS, 1983, 11 (01) :25-38
[5]  
David H.A., 1970, ORDER STAT
[6]  
DEHLING HG, 1991, STUD SCI MATH HUNG, V26, P297
[7]   NO EMPIRICAL PROBABILITY MEASURE CAN CONVERGE IN THE TOTAL VARIATION SENSE FOR ALL DISTRIBUTIONS [J].
DEVROYE, L ;
GYORFI, L .
ANNALS OF STATISTICS, 1990, 18 (03) :1496-1499
[8]  
DEVROYE L, 1987, PROGR PROBABILITY ST
[9]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[10]  
Ferguson TS., 1967, Mathematical statistics: A decision theoretic approach