Wavelet shrinkage for natural exponential families with quadratic variance functions

被引:33
作者
Antoniadis, A
Sapatinas, T
机构
[1] Univ Grenoble 1, Lab IMAG LMC, F-38041 Grenoble 9, France
[2] Univ Cyprus, Dept Math & Stat, Nicosia, Cyprus
关键词
crossvalidation mean squared error; diagonal shrinkage estimation; modulation estimator; natural exponential family; nonparametric regression; smoothing; wavelet shrinkage estimation;
D O I
10.1093/biomet/88.3.805
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a wavelet shrinkage methodology for univariate natural exponential families with quadratic variance functions, covering the Gaussian, Poisson, gamma, binomial, negative binomial and generalised hyperbolic secant distributions. Simulation studies for Poisson and binomial data are used to illustrate the usefulness of the proposed methodology, and comparisons are made with other methods available in the literature. We also present applications to datasets arising from high-energy astrophysics and from epidemiology.
引用
收藏
页码:805 / 820
页数:16
相关论文
共 31 条
[1]   Wavelet analysis and its statistical applications [J].
Abramovich, F ;
Bailey, TC ;
Sapatinas, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 2000, 49 :1-29
[2]   THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA [J].
ANSCOMBE, FJ .
BIOMETRIKA, 1948, 35 (3-4) :246-254
[3]   Nonparametric wavelet regression for binary response [J].
Antoniadis, A ;
Leblanc, F .
STATISTICS, 2000, 34 (03) :183-213
[4]  
Antoniadis A., 1997, J ITALIAN STAT ASS, V6, P97, DOI DOI 10.1007/BF03178905
[5]  
Beran R, 1998, ANN STAT, V26, P1826
[6]  
DAUBECHIES I, 1992, LECT WAVELETS
[7]  
Donoho D. L., 1993, Different, P173, DOI 10.1090/psapm/047
[8]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[9]  
Donoho DL, 1998, ANN STAT, V26, P879
[10]  
DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301