Robust stabilizability of uncertain linear time-delay systems with Markovian jumping parameters

被引:13
作者
Benjelloun, K
Boukas, EK
Yang, H
机构
[1] Mechanical Engineering Department, École Polytechnique de Montréal, Montreal, QC, P.O. Box 6079, Station “Centre-Ville”
来源
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME | 1996年 / 118卷 / 04期
关键词
D O I
10.1115/1.2802356
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we deal with the robust stabilizability of the class of uncertain linear time-delay systems with Markovian jumping parameters and unknown but bounded uncertainties, Under the assumption of the complete access to the continuous state, the stochastic controllability of the nominal system and the boundedness of the system's uncertainties, sufficient conditions which guarantee the robustness of the stability of this class of systems are given. The control law which guarantees the robustness of the stabilizability is linear-type or saturation-type. An example is presented to illustrate die usefulness of the proposed theoretical results.
引用
收藏
页码:776 / 783
页数:8
相关论文
共 31 条
[1]  
[Anonymous], PROBABILISTIC METHOD
[2]  
Barmish B. R., 1983, SIAM J CONTROL OPTIM, V21
[3]  
BOUKAS EK, 1993, CONTR-THEOR ADV TECH, V9, P577
[4]  
BOUKAS EK, 1996, 13 WORLD C INT FED A
[5]  
BOUKAS EK, 1990, IEEE T AUTOMATIC CON, V35
[6]  
BOUKAS EK, 1996, ROBUST LINEAR CONTRO
[7]   STABILIZATION OF UNCERTAIN DYNAMIC-SYSTEMS INCLUDING STATE DELAY [J].
CHERES, E ;
GUTMAN, S ;
PALMOR, ZJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (11) :1199-1203
[8]  
DAVIS MHA, 1984, J ROY STAT SOC B MET, V46, P353
[9]   UNCERTAIN DYNAMICAL-SYSTEMS - LYAPUNOV MIN-MAX APPROACH [J].
GUTMAN, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (03) :437-443
[10]  
JI Y, 1992, IEEE T AUTOMATIC CON, V37, P38