Self-tuning PID controllers based on the Lyapunov approach

被引:28
作者
Kansha, Yasuki [1 ]
Jia, Li [2 ]
Chiu, Min-Sen [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
[2] Shanghai Univ, Coll Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai 200072, Peoples R China
关键词
just-in-time learning; PID controller; Lyapunov method;
D O I
10.1016/j.ces.2008.02.026
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, a self-tuning PID controller using just-in-time learning (JITL) technique is proposed. A set of linear models obtained by the JITL provides the information required to adjust the parameters of PID controller. The self-tuning algorithm for the PID parameters is derived by a rigorous analysis based on the Lyapunov method such that the JITL's predicted tracking error converges asymptotically. Simulation results are presented to illustrate the proposed self-tuning PID controller and a comparison with its conventional counterparts is made. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2732 / 2740
页数:9
相关论文
共 19 条
[1]   Application of self-tuning PID control to a reactor of limestone slurry titrated with sulfuric acid [J].
Alpbaz, M ;
Hapoglu, H ;
Özkan, G ;
Altuntas, S .
CHEMICAL ENGINEERING JOURNAL, 2006, 116 (01) :19-24
[2]   Application of adaptive PID control with genetic algorithm to a polymerization reactor [J].
Altinten, A ;
Erdogan, S ;
Alioglu, F ;
Hapoglu, H ;
Alpbaz, M .
CHEMICAL ENGINEERING COMMUNICATIONS, 2004, 191 (09) :1158-1172
[3]   On-line tuning of a neural PID controller based on plant hybrid modeling [J].
Andrásik, A ;
Mészáros, A ;
de Azevedo, SE .
COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) :1499-1509
[4]  
Atkeson CG, 1997, ARTIF INTELL REV, V11, P75, DOI 10.1023/A:1006511328852
[5]  
Atkeson CG, 1997, ARTIF INTELL REV, V11, P11, DOI 10.1023/A:1006559212014
[6]   Adaptive control of an ETBE reactive distillation column [J].
Bisowarno, BH ;
Tian, YC ;
Tadé, MO .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2004, 37 (02) :210-216
[7]   The local paradigm for modeling and control: from neuro-fuzzy to lazy learning [J].
Bontempi, G ;
Bersini, H ;
Birattari, M .
FUZZY SETS AND SYSTEMS, 2001, 121 (01) :59-72
[8]  
Bontempi G, 1999, INT J CONTROL, V72, P643, DOI 10.1080/002071799220830
[9]   A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach [J].
Chang, WD ;
Hwang, RC ;
Hsieh, JG .
JOURNAL OF PROCESS CONTROL, 2002, 12 (02) :233-242
[10]  
Chen JH, 2004, J PROCESS CONTR, V14, P211, DOI 10.1016/S0959-1524(03)000039-8