RO 31-8220 activates c-Jun N-terminal kinase and glycogen synthase in rat adipocytes and L6 myotubes.: Comparison to actions of insulin

被引:27
作者
Standaert, ML
Bandyopadhyay, G
Antwi, EK
Farese, RV
机构
[1] James A Haley Vet Hosp, Res Serv VAR 151, Tampa, FL 33612 USA
[2] Univ S Florida, Coll Med, Dept Internal Med, Tampa, FL 33612 USA
[3] Univ S Florida, Coll Med, Dept Biochem Mol Biol, Tampa, FL 33612 USA
关键词
D O I
10.1210/en.140.5.2145
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The activation of c-Jun N-terminal kinase (JNK) by insulin and anisomycin has been reported to result in increases in glycogen synthase (GS) activity in rat skeletal muscle (Moxham et al., J Biol Chem, 1996, 271:30765-30773). In addition, the protein kinase C (PKC) inhibitor, RO 31-8220, has been reported to activate JNK in rat-1 fibroblasts (Beltman et al., J Biol Chem, 1996, 271:27018-27024). Presently, we found that the RO 31-8220, as well as insulin activated JNK and GS and stimulated glucose incorporation into glycogen in rat adipocytes and L6 myotubes. In contrast to activation of JNK RO 31-8220 inhibited extracellular response kinases 1 and 2 (ERK1/2) and had no significant effects on protein kinase B (PKB). Stimulatory effects of RO 31-8220 on JNK and glycogen metabolism were not explained by PKC inhibition, as other PKC inhibitors were without effect on glucose incorporation into glycogen and have no effect on JNK (Beltman ct al., J Biol Chem, 1996, 271:27018). Insulin, on the other hand activated JNK, as well as PKB and ERK1/2. However, stimulatory effects of insulin on GS and glucose incorporation into glycogen appeared to be fully intact and additive to those of RO 31-8220, despite the fact that insulin did not provoke additive increases in JNK activity above those observed with RO 31-8220 alone. Our findings suggest that JNK serves to activate GS during the action of RO 31-8220 in rat adipocytes and L6 myotubes; insulin, on the other hand, appears to activate GS largely independently of JNK.
引用
收藏
页码:2145 / 2151
页数:7
相关论文
共 27 条
[1]  
AHMAD Z, 1984, J BIOL CHEM, V259, P8743
[2]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[3]   Chronic activation of protein kinase C in soleus muscles and other tissues of insulin-resistant type II diabetic Goto-Kakizaki (GK), obese/aged, and obese/Zucker rats - A mechanism for inhibiting glycogen synthesis [J].
Avignon, A ;
Yamada, K ;
Zhou, XP ;
Spencer, B ;
Cardona, O ;
SabaSiddique, S ;
Galloway, L ;
Standaert, ML ;
Farese, RV .
DIABETES, 1996, 45 (10) :1396-1404
[4]   Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes [J].
Bandyopadhyay, G ;
Standaert, ML ;
Galloway, L ;
Moscat, J ;
Farese, RV .
ENDOCRINOLOGY, 1997, 138 (11) :4721-4731
[5]   The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase [J].
Beltman, J ;
McCormick, F ;
Cook, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (43) :27018-27024
[6]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[7]   THE INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN OR INSULIN-LIKE GROWTH-FACTOR-1 IN THE RAT SKELETAL-MUSCLE CELL-LINE-L6 IS BLOCKED BY WORTMANNIN, BUT NOT BY RAPAMYCIN - EVIDENCE THAT WORTMANNIN BLOCKS ACTIVATION OF THE MITOGEN-ACTIVATED PROTEIN-KINASE PATHWAY IN L6-CELLS BETWEEN RAS AND RAF [J].
CROSS, DAE ;
ALESSI, DR ;
VANDENHEEDE, JR ;
MCDOWELL, HE ;
HUNDAL, HS ;
COHEN, P .
BIOCHEMICAL JOURNAL, 1994, 303 :21-26
[8]   Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue [J].
Cross, DAE ;
Watt, PW ;
Shaw, M ;
vanderKaay, J ;
Downes, CP ;
Holder, JC ;
Cohen, P .
FEBS LETTERS, 1997, 406 (1-2) :211-215
[9]  
CROSS DAE, 1995, NATURE, V378, P21
[10]   Akt is a direct target of the phosphatidylinositol 3-kinase - Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells [J].
Datta, K ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) :30835-30839