Blow-up for degenerate parabolic equations with nonlocal source

被引:19
作者
Chen, YP [1 ]
Liu, QL [1 ]
Xie, CH [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
degenerate nonlocal problem; classical solution; global existence; blow-up set;
D O I
10.1090/S0002-9939-03-07090-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the blow-up properties of the solution to the degenerate nonlinear reaction diffusion equation with nonlocal source x(q)u(t)- (x(gamma)u(x))(x) = integral(0)(a)u(p)dx in (0, a) x (0, T) subject to the homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution exists globally or blows up in finite time are obtained. Furthermore, it is proved that under certain conditions the blow-up set of the solution is the whole domain.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 19 条
[1]   BLOWUP IN A PARTIAL-DIFFERENTIAL EQUATION WITH CONSERVED 1ST INTEGRAL [J].
BUDD, C ;
DOLD, B ;
STUART, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (03) :718-742
[2]   Focusing blow-up for quasilinear parabolic equations [J].
Budd, CJ ;
Galaktionov, VA ;
Chen, JP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :965-992
[3]   Existence of classical solutions for degenerate semilinear parabolic problems [J].
Chan, CY ;
Chan, WY .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 101 (2-3) :125-149
[4]   Global existence of solutions for degenerate semilinear parabolic problems [J].
Chan, CY ;
Liu, HT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (04) :617-628
[5]   Complete blow-up for degenerate semilinear parabolic equations [J].
Chan, CY ;
Yang, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 113 (1-2) :353-364
[6]  
Dunford N., 1963, LINEAR OPERATORS PAR
[7]   BLOW-UP AT THE BOUNDARY FOR DEGENERATE SEMILINEAR PARABOLIC EQUATIONS [J].
FLOATER, MS .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :57-77
[8]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[9]  
FRIEDMAN A., 1964, Partial differential equations of parabolic type
[10]  
Ladde GS., 1985, MONOTONE ITERATIVE T