Interaction of Inorganic Nanoparticles with Graphene

被引:72
作者
Das, Barun [1 ,2 ,3 ]
Choudhury, Biswajit [1 ,2 ,6 ]
Gomathi, A. [1 ,2 ]
Manna, Arun K. [5 ]
Pati, S. K. [5 ]
Rao, C. N. R. [1 ,2 ,3 ,4 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, CSIR Ctr Excellence Chem, Bangalore 560064, Karnataka, India
[3] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
[4] Jawaharlal Nehru Ctr Adv Sci Res, Int Ctr Mat Sci, Bangalore 560064, Karnataka, India
[5] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Bangalore 560064, Karnataka, India
[6] Tezpur Univ, Dept Phys, Napaam 784028, Assam, India
关键词
charge transfer; doping; graphene; magnetic properties; nanoparticles; MOLECULAR CHARGE-TRANSFER; ELECTRONIC-STRUCTURE; OXIDE; PSEUDOPOTENTIALS; NANOCOMPOSITES; SOLUBILIZATION; SEMICONDUCTOR; DEPOSITION; REDUCTION; CLUSTERS;
D O I
10.1002/cphc.201001090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO2 and with magnetic nanoparticles such as Fe3O4, CoFe2O4, and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices.
引用
收藏
页码:937 / 943
页数:7
相关论文
共 45 条
[1]  
Burke K, 1997, INT J QUANTUM CHEM, V61, P287, DOI 10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO
[2]  
2-9
[3]   Modifications in graphene electron states due to a deposited lattice of Au nanoparticles: Density functional calculations [J].
Carara, Sabrina S. ;
Batista, Ronaldo J. C. ;
Chacham, Helio .
PHYSICAL REVIEW B, 2009, 80 (11)
[4]   A NOVEL CLASS OF HEXANUCLEAR TITANOXANES - SYNTHESIS, STRUCTURE AND ELECTRONIC CONFIGURATION [J].
CAROFIGLIO, T ;
FLORIANI, C ;
ROTH, A ;
SGAMELLOTTI, A ;
ROSI, M ;
CHIESIVILLA, A ;
RIZZOLI, C .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1995, 488 (1-2) :141-154
[5]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[6]   Modelling nano-clusters and nucleation [J].
Catlow, C. Richard A. ;
Bromley, Stefan T. ;
Hamad, Said ;
Mora-Fonz, Miguel ;
Sokol, Alexey A. ;
Woodley, Scott M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (04) :786-811
[7]   Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions [J].
Chen, DH ;
Hsieh, CH .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (08) :2412-2415
[8]   Changes in the electronic structure and properties of graphene induced by molecular charge-transfer [J].
Das, Barun ;
Voggu, Rakesh ;
Rout, Chandra Sekhar ;
Rao, C. N. R. .
CHEMICAL COMMUNICATIONS, 2008, (41) :5155-5157
[9]   Global minima for transition metal clusters described by Sutton-Chen potentials [J].
Doye, JPK ;
Wales, DJ .
NEW JOURNAL OF CHEMISTRY, 1998, 22 (07) :733-744
[10]   Uptake of H2 and CO2 by graphene [J].
Ghosh, Anupama ;
Subrahmanyam, K. S. ;
Krishna, Katia Sai ;
Datta, Sudipta ;
Govindaraj, A. ;
Pati, Swapan K. ;
Rao, C. N. R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (40) :15704-15707