Adrenomedullin (ADM), a vasodilatatory peptide contained in adrenal medulla, was found to induce a dose-dependent increase in aldosterone (ALDO) and corticosterone (B) release by the in situ perfused rat adrenal gland, along with a rise in the how rate of the perfusion medium. The minimal effective dose for ALDO response was three and two orders of magnitude less than those able to evoke B and medium flow rate responses. Calcitonin gene-related peptide (CGRP), another vasodilatatory peptide contained in adrenal medulla and showing a slight homology in its amino acid sequence with ADM, elicited similar effects. CGRP(8-37), a specific antagonist of CGRP(1) receptors, annulled all the effects of both ADM and CGRP, whereas l-alprenolol, a beta-adrenoceptor antagonist, partially reversed only ALDO response to the peptides. In light of these findings the following conclusions are drawn: i) ADM and CGRP stimulate rat adrenals in vivo to release B by raising blood flow rate; ii) ADM and CGRP enhance ALDO secretion via an indirect mechanism probably requiring the release of catecholamines by medullary chromaffin cells; and iii) the effects of ADM and CGRP on the rat adrenal gland are mediated by a common receptor of the CGRP, subtype.