Optimization of the hermitian and skew-Hermitian splitting iteration for saddle-point problems

被引:98
作者
Benzi, M [1 ]
Gander, MJ
Golub, GH
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Stanford Univ, Sci Comp & Computat Math Program, Stanford, CA 94305 USA
来源
BIT | 2003年 / 43卷 / 05期
基金
美国国家科学基金会;
关键词
HSS iteration; saddle-point problems; Fourier analysis; rates of convergence;
D O I
10.1023/B:BITN.0000014548.26616.65
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the asymptotic rate of convergence of the alternating Hermitian/skewHermitian iteration for solving saddle-point problems arising in the discretization of elliptic partial differential equations. By a careful analysis of the iterative scheme at the continuous level we determine optimal convergence parameters for the model problem of the Poisson equation written in div-grad form. We show that the optimized convergence rate for small mesh parameter h is asymptotically 1 - O(h(1/2)). Furthermore we show that when the splitting is used as a preconditioner for a Krylov method, a different optimization leading to two clusters in the spectrum gives an optimal, h-independent, convergence rate. The theoretical analysis is supported by numerical experiments.
引用
收藏
页码:881 / 900
页数:20
相关论文
共 14 条
[1]  
[Anonymous], 1983, STUD MATH APPL
[2]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[3]  
BAI ZZ, 2002, SCCM0212 STANF U DEP
[4]  
Benzi M., 2002, SCCM0214 STANF U DEP
[5]  
BERTACCINI D, 2002, SCCM0211 STANF U DEP
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]   FOURIER-ANALYSIS OF ITERATIVE METHODS FOR ELLIPTIC PROBLEMS [J].
CHAN, TF ;
ELMAN, HC .
SIAM REVIEW, 1989, 31 (01) :20-49
[8]  
CONCUS P, 1976, STANCS76535 STANF U
[9]   Preconditioners for saddle point problems arising in computational fluid dynamics [J].
Elman, HC .
APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) :75-89
[10]   Optimized Schwarz methods without overlap for the Helmholtz equation [J].
Gander, MJ ;
Magoulès, F ;
Nataf, F .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01) :38-60