Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly(lactic acid) conductive biopolymer nanocomposites (CPC)

被引:82
作者
Antar, Z. [1 ,2 ,3 ]
Feller, J. F. [1 ]
Noel, H. [2 ]
Glouannec, P. [2 ]
Elleuch, K. [3 ]
机构
[1] European Univ Brittany UEB, Smart Plast Grp, LIMATB UBS, Lorient, France
[2] European Univ Brittany UEB, Energet & Thermal Transfers Grp, LIMATB UBS, Lorient, France
[3] ENIS, Ind Chem & Mat Unit URCIM, Sfax, Tunisia
关键词
Conductive polymer composites; Thermolectrical effect; Seebeck; ZT; Carbon nanotube; Expanded graphite; Poly(lactic acid); POLYMER COMPOSITES; THERMAL-CONDUCTIVITY; LOW PERCOLATION; NANOTUBES; ROUTE; DIFFUSIVITY; SIMULATION;
D O I
10.1016/j.matlet.2011.09.060
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of the study was to examine the possible use of conductive polymer composites (CPC) as thermoelectrical material for energy harvesting from temperature gradient. Their ease of processing, low cost and environmental impact compared to typical thermoelectric semiconductor materials were found to be strong advantages for large scale production. Our results show that eGR-CNT hybrid fillers are the most effective to enhance the CPC electrical conductivity up to sigma = 4123 S.m(-1), but that eGR is more effective to improve both thermal conductivity (lambda(c) = 5.5 W.m(-1).K-1) and SEEBECK coefficient (S = 17 mu V.K-1), whereas finally CNT give the best compromise to reach the highest ZT = 7 x 10(-5) at room temperature. This finding is attributed to the ability of CNT network to allow electron circulation by tunnelling, when junctions are separated by an insulating polymer film (even of some nm thick), whereas phonon scattering at nanointerfaces will prevent their effective transmission through the CPC. Although the intrinsic individual physical properties obtained (sigma, lambda(c), S) with the different kinds of carbon filler were good, it was not possible to completely uncouple them to maximise if. We believe that this value of ZT, too low for commercial application, can be enhanced by increasing the confinement of conducting fillers with exclusion volumes and by decreasing the thermal conductivity of the matrix with voids. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:210 / 214
页数:5
相关论文
共 47 条
[1]   Cyclic microwave-assisted synthesis of Cu3BiS3 dendrites using L-cysteine as a sulfur source and complexing agent [J].
Aup-Ngoen, Kamonwan ;
Thongtem, Somchai ;
Thongtem, Titipun .
MATERIALS LETTERS, 2011, 65 (03) :442-445
[2]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[3]   Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres [J].
Bilotti, Emiliano ;
Zhang, Rui ;
Deng, Hua ;
Baxendale, Mark ;
Peijs, Ton .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (42) :9449-9455
[4]   Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite [J].
Cai, Dongyu ;
Song, Mo .
CARBON, 2008, 46 (15) :2107-2112
[5]   Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors [J].
Castro, M. ;
Kumar, B. ;
Feller, J. F. ;
Haddi, Z. ;
Amari, A. ;
Bouchikhi, B. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 159 (01) :213-219
[6]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[7]   The thermoelectric properties of Co4Sb12-xTex synthesized at different pressure [J].
Deng, L. ;
Jia, X. P. ;
Su, T. C. ;
Jiang, Y. P. ;
Zheng, S. Z. ;
Guo, X. ;
Ma, H. A. .
MATERIALS LETTERS, 2011, 65 (06) :1057-1059
[8]   Thermal diffusivity of polymers by the laser flash technique [J].
dos Santos, WN ;
Mummery, P ;
Wallwork, A .
POLYMER TESTING, 2005, 24 (05) :628-634
[9]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[10]   Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites [J].
Droval, G. ;
Feller, J. -F. ;
Salagnac, P. ;
Glouannec, P. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2006, 17 (9-10) :732-745