Unconditional security of quantum key distribution over arbitrarily long distances

被引:1366
作者
Lo, HK
Chau, HF
机构
[1] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
[2] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
关键词
D O I
10.1126/science.283.5410.2050
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum key distribution is widely thought to offer unconditional security in communication between two users. Unfortunately, a widely accepted proof of its security in the presence of source, device, and channel noises has been missing. This long-standing problem is solved here by showing that, given fault-tolerant quantum computers, quantum key distribution over an arbitrarily long distance of a realistic noisy channel can be made unconditionally secure. The proof is reduced from a noisy quantum scheme to a noiseless quantum scheme and then from a noiseless quantum scheme to a noiseless classical scheme, which can then be tackled by classical probability theory.
引用
收藏
页码:2050 / 2056
页数:7
相关论文
共 50 条
[1]  
Aharonov D., 1998, P 29 ANN ACM S THEOR, P176
[2]  
Bell JS, 1964, Physics, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[3]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[4]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[7]   Parity bit in quantum cryptography [J].
Bennett, CH ;
Mor, T ;
Smolin, JA .
PHYSICAL REVIEW A, 1996, 54 (04) :2675-2684
[8]   Security of quantum cryptography against collective attacks [J].
Biham, E ;
Mor, T .
PHYSICAL REVIEW LETTERS, 1997, 78 (11) :2256-2259
[9]  
Brassard G., 1993, Proceedings. 34th Annual Symposium on Foundations of Computer Science (Cat. No.93CH3368-8), P362, DOI 10.1109/SFCS.1993.366851
[10]  
Brassard G., 1996, SIGACT News, V27, P13, DOI 10.1145/235666.235669