Feature extraction from remote sensing data using kernel orthonormalized PLS

被引:8
作者
Arenas-Garcia, Jeronimo [1 ]
Camps-Valls, Gustavo [2 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, E-28903 Getafe, Spain
[2] Univ Valencia, Dept Elect Engn, E-46003 Valencia, Spain
来源
IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET | 2007年
关键词
D O I
10.1109/IGARSS.2007.4422779
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the study of a sparse kernel-based method for non-linear feature extraction in the context of remote sensing classification and regression problems. The so-called Kernel Orthonomalized PLS algorithm with reduced complexity (rKOPLS) has two core parts: (i) a kernel version of OPLS (called KOPLS), and (ii) a sparse (reduced) approximation for large scale data sets, which ultimately leads to rKOPLS. The method demonstrates good capabilities in terms of expressive power of the extracted features and scalability.
引用
收藏
页码:258A / +
页数:2
相关论文
共 18 条
[1]  
[Anonymous], 2004, KERNEL METHODS PATTE
[2]  
[Anonymous], 1999002 GATSB COMP N
[3]  
Arenas-Garcia J., 2007, ADV NEURAL INFORM PR, V19
[4]   Robust support vector regression for biophysical variable estimation from remotely sensed images [J].
Camps-Valls, Gustavo ;
Bruzzone, Lorenzo ;
Rojo-Alvarez, Jose L. ;
Melgani, Farid .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (03) :339-343
[5]  
CampsValls G, 2007, KERNEL METHODS IN BIOENGINEERING, SIGNAL AND IMAGE PROCESSING, P1
[6]   Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks [J].
Cipollini, P ;
Corsini, G ;
Diani, M ;
Grasso, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07) :1508-1524
[7]  
Geladi P., 1988, J CHEMOMETR, V2, P231, DOI DOI 10.1002/CEM.1180020403
[8]   Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data [J].
Naesset, E ;
Bollandsås, OM ;
Gobakken, T .
REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) :541-553
[9]   Ocean color chlorophyll algorithms for SeaWiFS [J].
O'Reilly, JE ;
Maritorena, S ;
Mitchell, BG ;
Siegel, DA ;
Carder, KL ;
Garver, SA ;
Kahru, M ;
McClain, C .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C11) :24937-24953
[10]  
ROSIAL R, 2006, SUBSPACE LATENT STRU