Spectroscopic determination of leaf water content using continuous wavelet analysis

被引:202
作者
Cheng, T. [1 ]
Rivard, B. [1 ]
Sanchez-Azofeifa, A. [1 ]
机构
[1] Univ Alberta, Dept Earth & Atmospher Sci, Earth Observat Syst Lab, Edmonton, AB T6G 2E3, Canada
基金
美国国家科学基金会;
关键词
Leaf; Water content; Wavelet analysis; Spectroscopy; Hyperspectral; Tropical forests; Feature selection; FUEL MOISTURE-CONTENT; SUBPIXEL HYPERSPECTRAL TARGETS; SPECTRAL REFLECTANCE; ABSORPTION FEATURES; AUTOMATED DETECTION; CHEMICAL-ANALYSIS; LIQUID WATER; VEGETATION; FOREST; DECOMPOSITION;
D O I
10.1016/j.rse.2010.11.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The gravimetric water content (GWC, %), a commonly used measure of leaf water content, describes the ratio of water to dry matter for each individual leaf. To date, the relationship between spectral reflectance and GWC in leaves is poorly understood due to the confounding effects of unpredictably varying water and dry matter ratios on spectral response. Few studies have attempted to estimate GWC from leaf reflectance spectra, particularly for a variety of species. This paper investigates the spectroscopic estimation of leaf GWC using continuous wavelet analysis applied to the reflectance spectra (350-2500 nm) of 265 leaf samples from 47 species observed in tropical forests of Panama. A continuous wavelet transform was performed on each of the reflectance spectra to generate a wavelet power scalogram compiled as a function of wavelength and scale. Linear relationships were built between wavelet power and GWC expressed as a function of dry mass (LWCD) and fresh mass (LWCF) in order to identify wavelet features (coefficients) that are most sensitive to changes in GWC. The derived wavelet features were then compared to three established spectral indices used to estimate GWC across a wide range of species. Eight wavelet features observed between 1300 and 2500 nm provided strong correlations with LWCD, though correlations between spectral indices and leaf GWC were poor. In particular, two features captured amplitude variations in the broad shape of the reflectance spectra and three features captured variations in the shape and depth of dry matter (e.g., protein, lignin, cellulose) absorptions centered near 1730 and 2100 nm. The eight wavelet features used to predict LWCD and LWCF were not significantly different; however, predictive models used to determine LWCD and LWCF differed. The most accurate estimates of LWCD and LWCF obtained from a single wavelet feature showed root mean square errors (RMSEs) of 28.34% (R-2 = 0.62) and 4.86% (R-2 = 0.69), respectively. Models using a combination of features resulted in a noticeable improvement predicting LWCD and LWCF with RMSEs of 26.04% (R-2 = 0.71) and 4.34% (R-2 = 0.75), respectively. These results provide new insights into the role of dry matter absorption features in the shortwave infrared (SWIR) spectral region for the accurate spectral estimation of LWCD and LWCF. This emerging spectral analytical approach can be applied to other complex datasets including a broad range of species, and may be adapted to estimate basic leaf biochemical elements such as nitrogen, chlorophyll, cellulose, and lignin. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:659 / 670
页数:12
相关论文
共 68 条
[1]   Wavelet transforms and the ECG: a review [J].
Addison, PS .
PHYSIOLOGICAL MEASUREMENT, 2005, 26 (05) :R155-R199
[2]   Texture classification using wavelet transform [J].
Arivazhagan, S ;
Ganesan, L .
PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) :1513-1521
[3]   Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: Implications for remote sensing in tropical environments [J].
Arturo Sanchez-Azofeifa, G. ;
Castro, Karen ;
Joseph Wright, S. ;
Gamon, John ;
Kalacska, Margaret ;
Rivard, Benoit ;
Schnitzer, Stefan A. ;
Feng, Ji Lu .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (10) :2076-2088
[4]   Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels [J].
Asner, Gregory P. ;
Martin, Roberta E. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) :3958-3970
[5]   Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation [J].
Blackburn, G. A. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (12) :2831-2855
[6]   Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis [J].
Blackburn, George Alan ;
Ferwerda, Jelle Garke .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1614-1632
[7]   Automated detection of subpixel hyperspectral targets with adaptive multichannel discrete wavelet transform [J].
Bruce, LM ;
Li, J ;
Huang, Y .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (04) :977-980
[8]   Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms [J].
Bruce, LM ;
Morgan, C ;
Larsen, S .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (10) :2217-2226
[9]   Variability in leaf optical properties of Mesoamerican trees and the potential for species classification [J].
Castro-Esau, KL ;
Sánchez-Azofeifa, GA ;
Rivard, B ;
Wright, SJ ;
Quesada, M .
AMERICAN JOURNAL OF BOTANY, 2006, 93 (04) :517-530
[10]   Discrimination of lianas and trees with leaf-level hyperspectral data [J].
Castro-Esau, KL ;
Sánchez-Azofeifa, GA ;
Caelli, T .
REMOTE SENSING OF ENVIRONMENT, 2004, 90 (03) :353-372