Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons

被引:308
作者
Hibino, H. [1 ]
Kageshima, H. [1 ]
Maeda, F. [1 ]
Nagase, M. [1 ]
Kobayashi, Y. [1 ]
Yamaguchi, H. [1 ]
机构
[1] NTT Corp, NTT Basic Res Labs, Kanagawa 2430198, Japan
来源
PHYSICAL REVIEW B | 2008年 / 77卷 / 07期
关键词
D O I
10.1103/PhysRevB.77.075413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low-energy electron microscopy (LEEM) was used to measure the reflectivity of low-energy electrons from graphitized SiC(0001). The reflectivity shows distinct quantized oscillations as a function of the electron energy and graphite thickness. Conduction bands in thin graphite films form discrete energy levels whose wave vectors are normal to the surface. Resonance of the incident electrons with these quantized conduction band states enhances electrons to transmit through the film into the SiC substrate, resulting in dips in the reflectivity. The dip positions are well explained using tight-binding and first-principles calculations. The graphite thickness distribution can be determined microscopically from LEEM reflectivity measurements.
引用
收藏
页数:7
相关论文
共 45 条
[1]   LEEM phase contrast [J].
Altman, MS ;
Chung, WF ;
Liu, CH .
SURFACE REVIEW AND LETTERS, 1998, 5 (06) :1129-1141
[2]   Quantum size effect in low energy electron diffraction of thin films [J].
Altman, MS ;
Chung, WF ;
He, ZQ ;
Poon, HC ;
Tong, SY .
APPLIED SURFACE SCIENCE, 2001, 169 :82-87
[3]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   1ST-PRINCIPLES STUDY OF THE ELECTRONIC-PROPERTIES OF GRAPHITE [J].
CHARLIER, JC ;
GONZE, X ;
MICHENAUD, JP .
PHYSICAL REVIEW B, 1991, 43 (06) :4579-4589
[6]   Growth of monodispersed cobalt nanoparticles on 6H-SiC(0001) honeycomb template [J].
Chen, W ;
Loh, KP ;
Xu, H ;
Wee, ATS .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :281-283
[7]   Photoemission studies of quantum well states in thin films [J].
Chiang, TC .
SURFACE SCIENCE REPORTS, 2000, 39 (7-8) :181-235
[8]   Layer spacings in coherently strained epitaxial metal films [J].
Chung, WF ;
Feng, YJ ;
Poon, HC ;
Chan, CT ;
Tong, SY ;
Altman, MS .
PHYSICAL REVIEW LETTERS, 2003, 90 (21) :4-216105
[9]   The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds [J].
Csányi, G ;
Littlewood, PB ;
Nevidomskyy, AH ;
Pickard, CJ ;
Simons, BD .
NATURE PHYSICS, 2005, 1 (01) :42-45
[10]   3-DIMENSIONAL ENERGY-BAND IN GRAPHITE AND LITHIUM-INTERCALATED GRAPHITE [J].
FAUSTER, T ;
HIMPSEL, FJ ;
FISCHER, JE ;
PLUMMER, EW .
PHYSICAL REVIEW LETTERS, 1983, 51 (05) :430-433